重庆市典型行业废水中16种全氟化合物污染特征
Pollution Status of Sixteen Per- and Polyfluoroalkyl Substances in Wastewater of Typical Industries in Chongqing City
-
摘要: 为了解重庆市不同行业废水中全氟化合物(per-and polyfluoroalkyl substances,PFASs)的污染状况,在该市范围内选择橡胶制造业、塑料制品制造业、涂料制造业、印刷业、造纸和纸制品业、电气机械和器材制造业、电子设备制造业、汽车制造业、纺织业、医药制造业和化学纤维制造业11个典型行业的26家企业为调查对象,对企业污水处理设施进、出口废水中PFASs的污染水平进行研究。结果显示,16种PFASs在进、出水中均有不同程度的检出,检出率介于3%~100%之间,进、出水中PFASs总含量(∑16PFASs)范围分别为12.4~38 484 ng·L-1和10.0~48 677 ng·L-1,污染水平呈现中链>短链>长链的趋势。其中全氟辛酸(perfluorooctanoic acid,PFOA)和全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)是废水中最主要的污染物,分别占进水中∑16PFASs的50.8%和21.4%,出水中∑16PFASs的54.4%和20.3%。Spearman相关性分析显示,进出水中短、中链PFASs之间具有明显的正相关关系(P<0.05),表明两者有相似的污染来源和环境行为。比较进出水中PFASs的污染特征可知,企业污水处理设施对长链PFASs具有相对较好的去除效果,而对短、中链污染物的去除效率十分有限。26家企业废水与长江流域重庆段水体中PFASs的组成情况相类似,均以PFOA为首要污染物,且大部分出水中PFASs污染水平明显高于附近流域,表明工业废水很可能是重庆市地表水中PFASs的重要来源之一,因此工业废水中PFASs的治理需要引起重视。Abstract: To investigate the contamination of per- and polyfluoroalkyl substances (PFASs) in wastewater from different industries in Chongqing City, the concentrations and distributions of 16 PFASs in the influent and effluent from industrial wastewater treatment stations (IWWTSs) of 26 enterprises were analyzed in the present study. Eleven typical industries, including the manufacturing of rubber, plastics, paint, printing, paper, electrical and mechanical products, electronic equipment, automobile, textile, pharmaceutical products and chemical fibers, were investigated. Results showed that all PFASs were detected in both the influent and the effluent of IWWTSs, with detection frequencies (DFs) ranging from 3% to 100%. The concentrations of total PFASs (∑16PFASs) in the influent and effluent were 12.4~38 484 ng·L-1 and 10.0~48 677 ng·L-1, respectively. The distribution of PFASs followed an order as medium- > short- > long chain PFASs. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were the dominant compounds, accounting for 50.8% and 21.4% respectively in the influent, and 54.4% and 20.3% respectively in the effluent. Spearman correlation analysis indicates significant positive correlations between short- and medium chain PFASs in both the influent and the effluent (P<0.05), suggesting their potentially similar sources and environmental behaviors. Comparing the PFAS pollution in the influent and the effluent, the removal efficiency of long chain PFASs by IWWTSs was better than short- and medium chain PFASs. Similar compositions of PFASs were observed in the industrial wastewater of 26 enterprises and the water in the Yangtze River system of Chongqing City, with PFOA as the predominant compound. And the concentrations of PFASs in the effluent of most IWWTSs were higher than those in the nearby surface water, suggesting that the discharge of industrial wastewater is probably the pollution source of PFASs in the Yangtze River system of Chongqing City. Therefore, more attention should be paid to the treatment of PFASs in the industrial wastewater.
-
-
Kim M, Li L Y, Grace J R, et al. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors[J]. Environmental Pollution, 2015, 196:462-472 Field J A, Seow J. Properties, occurrence, and fate of fluorotelomer sulfonates[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(8):643-691 Abunada Z, Alazaiza M Y D, Bashir M J K. An overview of per- and polyfluoroalkyl substances (PFAS) in the environment:Source, fate, risk and regulations[J]. Water, 2020, 12(12):3590 Cui D N, Li X R, Quinete N. Occurrence, fate, sources and toxicity of PFAS:What we know so far in Florida and major gaps[J]. Trends in Analytical Chemistry, 2020, 130:115976 Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2):131-147 Domingo J L, Nadal M. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake:A review of the recent scientific literature[J]. Journal of Agricultural and Food Chemistry, 2017, 65(3):533-543 Rappazzo K, Coffman E, Hines E. Exposure to perfluorinated alkyl substances and health outcomes in children:A systematic review of the epidemiologic literature[J]. International Journal of Environmental Research and Public Health, 2017, 14(7):691 Banzhaf S, Filipovic M, Lewis J, et al. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs)[J]. Ambio, 2017, 46(3):335-346 Han D M, Currell M J. Persistent organic pollutants in China's surface water systems[J]. Science of the Total Environment, 2017, 580:602-625 Wang Q, Ruan Y F, Lin H J, et al. Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment[J]. Science of the Total Environment, 2020, 737:139804 Meng J, Wang T Y, Song S, et al. Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China[J]. Environmental Pollution, 2018, 238:404-412 Li J F, He J H, Niu Z G, et al. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China:Present implications of replacing legacy PFASs[J]. Environment International, 2020, 135:105419 Ding G H, Xue H H, Zhang J, et al. Occurrence and distribution of perfluoroalkyl substances (PFASs) in sediments of the Dalian Bay, China[J]. Marine Pollution Bulletin, 2018, 127:285-288 Jiao X C, Shi Q Y, Gan J. Uptake, accumulation and metabolism of PFASs in plants and health perspectives:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2020(19):1-32 Chiesa L M, Nobile M, Malandra R, et al. Food safety traits of mussels and clams:Distribution of PCBs, PBDEs, OCPs, PAHs and PFASs in sample from different areas using HRMS-Orbitrap® and modified QuEChERS extraction followed by GC-MS/MS[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2018, 35(5):959-971 Liu Y X, Li A, Buchanan S, et al. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants[J]. Environment International, 2020, 144:106012 孔祥云, 王华, 陈虹, 等. 全氟化合物的环境污染与毒性研究[J]. 环境科学与技术, 2015, 38(S1):5-9 Kong X Y, Wang H, Chen H, et al. Concentrations of perfluorinated compounds in the environment and their toxicity[J]. Environmental Science & Technology, 2015, 38(S1):5-9(in Chinese)
杨杰文, 秦小迪, 李永凌, 等. 全氟化合物对儿童肺功能影响的病例对照研究[J]. 中国学校卫生, 2017, 38(7):1035-1038 Yang J W, Qin X D, Li Y L, et al. Comparative study of the effect of perfluoroalkyl substances exposure on children's lung function[J]. Chinese Journal of School Health, 2017, 38(7):1035-1038(in Chinese)
Anderson-Mahoney P, Kotlerman J, Takhar H, et al. Self-reported health effects among community residents exposed to perfluorooctanoate[J]. New Solutions, 2008, 18(2):129-143 中华人民共和国生态环境部. 关于禁止生产、流通、使用和进出口林丹等持久性有机污染物的公告. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201903/t20190312_695462.html. 杜国勇, 蒋小萍, 卓丽, 等. 长江流域重庆段水体中全氟化合物的污染特征及风险评价[J]. 生态环境学报, 2019, 28(11):2266-2272 Du G Y, Jiang X P, Zhuo L, et al. Distribution characteristics and risk assessment of perfluorinated compounds in surface water from Chongqing section of the Yangtze River[J]. Ecology and Environmental Sciences, 2019, 28(11):2266-2272(in Chinese)
金一和, 丁梅, 翟成, 等. 长江三峡库区江水和武汉地区地面水中PFOS和PFOA污染现状调查[J]. 生态环境, 2006, 15(3):486-489 Jin Y H, Ding M, Zhai C, et al. An investigation of the PFOS and PFOA pollution in Three Gorges Reservoir areas of the Yangtze River and surface water of Wuhan areas[J]. Ecology and Environment, 2006, 15(3):486-489(in Chinese)
汪磊, 张彰, 张宪忠, 等. 污水处理厂中全氟化合物的污染研究[J]. 环境科学学报, 2011, 31(7):1363-1368 Wang L, Zhang Z, Zhang X Z, et al. Removal of perfluorinated compounds by wastewater treatment plants[J]. Acta Scientiae Circumstantiae, 2011, 31(7):1363-1368(in Chinese)
刘嘉烈, 石运刚, 唐娜, 等. 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征[J]. 环境化学, 2020, 39(12):3450-3461 Liu J L, Shi Y G, Tang N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City[J]. Environmental Chemistry, 2020, 39(12):3450-3461(in Chinese)
卓丽, 石运刚, 蔡凤珊, 等. 长江干流、嘉陵江和乌江重庆段邻苯二甲酸酯污染特征及生态风险评估[J]. 生态毒理学报, 2020, 15(3):158-170 Zhuo L, Shi Y G, Cai F S, et al. Pollution characteristics and ecological risk assessment of phthalate esters in the Yangtze River, Jialing River and Wujiang River in Chongqing, China[J]. Asian Journal of Ecotoxicology, 2020, 15(3):158-170(in Chinese)
Rahman M F, Peldszus S, Anderson W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment:A review[J]. Water Research, 2014, 50:318-340 赵亮, 张鸿, 郑正, 等. 深圳市典型行业全氟化合物特征污染指纹[J]. 深圳大学学报:理工版, 2014, 31(5):537-543 Zhao L, Zhang H, Zheng Z, et al. Perfluorinated compounds pollution fingerprints in typical industries of Shenzhen[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(5):537-543(in Chinese)
顾春节, 钟哲辉, 徐晨烨, 等. 印染末端废水中全氟化合物的污染特征、影响因素及风险评价[J]. 环境科学学报, 2021, 41(5):1920-1929 Gu C J, Zhong Z H, Xu C Y, et al. Occurrence, influencing factors, and risks assessment of perfluorinated compounds (PFCs) in wastewater from textile and dyeing industry[J]. Acta Scientiae Circumstantiae, 2021, 41(5):1920-1929(in Chinese)
So M K, Miyake Y, Yeung W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze River of China[J]. Chemosphere, 2007, 68(11):2085-2095 Wang N, Szostek B, Buck R C, et al. Fluorotelomer alcohol biodegradation-Direct evidence that perfluorinated carbon chains breakdown[J]. Environmental Science & Technology, 2005, 39(19):7516-7528 陈静, 张彭义, 刘剑. 全氟羧酸在185 nm真空紫外光下的降解研究[J]. 环境科学, 2007, 28(4):4772-4776 Chen J, Zhang P Y, Liu J. Photodegradation of perfluorinated carboxylic acids by 185 nm VUV light[J]. Environmental Science, 2007, 28(4):4772-4776(in Chinese)
黄汉生, Deisenroth E. 一类新的造纸工业用油脂拒斥性氟化合物[J]. 有机氟工业, 2000(2):38-45, 32 梅胜放. 我国PFOS/PFOA的生产、应用以及国内外标准现状[J]. 有机氟工业, 2008(1):21-25 张宪忠. 全氟化合物在污水处理厂中的归趋研究[D]. 天津:南开大学, 2010:43-46 Zhang X Z. Study on fate of perfluorinated compounds in wastewater treatment plants[D]. Tianjin:Nankai University, 2010:43 -46(in Chinese)
Remde A, Debus R. Biodegradability of fluorinated surfactants under aerobic and anaerobic conditions[J]. Chemosphere, 1996, 32(8):1563-1574 Appleman T D, Higgins C P, Quiñones O, et al. Treatment of poly- and perfluoroalkyl substances in US full-scale water treatment systems[J]. Water Research, 2014, 51:246-255 Sun H W, Gerecke A C, Giger W, et al. Long-chain perfluorinated chemicals in digested sewage sludges in Switzerland[J]. Environmental Pollution, 2011, 159(2):654-662 Lee S H, Cho Y J, Lee M, et al. Detection and treatment methods for perfluorinated compounds in wastewater treatment plants[J]. Applied Sciences, 2019, 9(12):2500 张慧, 王世亮, 余杨. 乐安河河流水体典型全氟化合物的浓度及其前体物的污染贡献[J]. 环境科学, 2020, 41(7):3204-3211 Zhang H, Wang S L, Yu Y. Concentrations of typical perfluoroalkyl acids and contributions of their precursors in the water of the Le'an River in China[J]. Environmental Science, 2020, 41(7):3204-3211(in Chinese)
Yu J, Hu J Y, Tanaka S, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants[J]. Water Research, 2009, 43(9):2399-2408 Sun H W, Li F S, Zhang T, et al. Perfluorinated compounds in surface waters and WWTPs in Shenyang, China:Mass flows and source analysis[J]. Water Research, 2011, 45(15):4483-4490 Liu Z Y, Lu Y L, Wang P, et al. Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and Eastern China[J]. Science of the Total Environment, 2017, 580:1247-1256 -

计量
- 文章访问数: 5086
- HTML全文浏览数: 5086
- PDF下载数: 195
- 施引文献: 0