-
石油开采、冶炼、运输和使用过程中因渗漏、溢出排放的石油类污染物在土壤中累积,对土壤环境造成了严重的危害[1]。石油污染物的组分复杂,主要包括脂肪烃、芳香烃、胶质和沥青质,普遍具有强疏水性,且含有大量的致癌、致畸类物质。石油污染物一旦进入土壤环境,可引起土壤的理化性质变化(如堵塞土壤孔隙、改变土壤有机质组成和结构等),进而改变甚至破坏土壤生态系统,其还会挥发到空气及向下迁移到地下水中威胁人类的健康[2-3]。我国勘探和开发的油田、油气田超过400个,分布在全国25个省、市、自治区,油田覆盖地区的面积超了3×105 km2,约占我国土地总面积的3%。其中,约有4.8×104 km2的土壤因受到石油勘探、开采、运输以及存储等过程的影响而被污染[4-5]。因此,亟需对石油污染土壤进行修复。
热脱附技术是通过直接或间接热交换,将土壤中的污染物加热至足够高的温度,使污染物从土壤中挥发或分离的过程。因其具有操作灵活、运行稳定、处理效率较高等优点而在有机污染土壤修复中被大量应用[6-9]。VIDONISH等[7]将人工配制石油污染土壤在420 ℃热处理3 h后,发现高沸点石油烃在低于沸点的温度下转化为类焦炭物质,去除污染物的同时提升了土壤肥力。LI等[8]在500 ℃对人工配制石油污染土壤热处理30 min时,土壤中总石油烃几乎完全去除。这些研究存在处理时间较长(3 h)或温度较高(500 ℃)的不足。另外,这些研究均采用人工配置石油污染土壤,与人工配置石油污染土壤相比,实际石油污染土壤由于自然风化作用,导致土壤中残留的主要为高沸点重质石油烃污染物[10-13],土壤中污染物更加难以去除。为了降低热脱附修复石油污染土壤的能耗,使用添加剂在相对较低的温度下强化热脱附的修复效果是一种新的研究方向。FRANKIN等[14]研究发现,含钙的矿物质可以降低沥青煤热处理过程中焦油产量,增加气体产物。周锦文[15]利用Ca(OH)2强化热处理煤的研究结果表明,Ca(OH)2能够使焦油二次热解及对煤的初始分解具有较强的催化作用,降低焦炭产率、增加气体产率。这些研究表明,Ca(OH)2具有强化热脱附修复石油污染土壤的潜力。但Ca(OH)2对重质石油污染土壤强化热脱附的修复效果还有待研究。
本研究选取山东东营石油污染土壤为实验土壤,以廉价易得的Ca(OH)2强化热脱附重质石油烃污染物,研究了热脱附温度、停留时间、添加剂用量等对重质石油污染土壤中总石油烃去除率的影响,并对热脱附前后土壤微观形貌的变化进行了分析,以期为Ca(OH)2类添加剂促进热脱附技术在石油污染土壤修复应用中的节能降耗提供参考。
熟石灰强化热脱附修复重质石油污染土壤
Remediation of heavy petroleum-contaminated soil by calcium hydroxide-enhanced thermal desorption
-
摘要: 针对热脱附技术修复石油污染土壤存在能耗高的问题,采用添加Ca(OH)2实现在相对较低的温度下强化热脱附重质石油污染土壤,以降低能耗。通过室内模拟实验,研究了热脱附温度、停留时间和Ca(OH)2添加量对重质石油污染土壤中总石油烃(total petroleum hydrocarbon, TPH)去除率的影响。结果表明,当热脱附温度为400 ℃、停留时间为30 min、加入1% Ca(OH)2时,石油污染土壤中TPH的去除率相比无Ca(OH)2热脱附的土壤提高了23.6%;土壤中饱和烃、芳香烃、胶质和沥青质的去除率分别增加了17.3%、29.3%、18.1%和46.7%,对沥青质的去除效果最佳。Ca(OH)2能够降低热反应活化能且增加活性位点是其显著促进土壤中重质石油烃的热脱附去除的主要原因。Ca(OH)2强化热脱附后土壤粘性降低,分散性增强,粒径变小,且在表面生成一层类焦炭的物质。该研究结果可为热脱附技术在石油污染土壤修复中的应用提供参考。Abstract: Aiming at the disadvantage of high energy consumption of thermal desorption techniques in remediating heavy petroleum-contaminated soil, Ca(OH)2 was used in this study to strengthen the remediation of heavy petroleum-contaminated soil at comparatively low thermal desorption temperature and decrease the energy consumption. The effects of thermal desorption temperature, retention time, and the addition amount of Ca(OH)2 on the removal efficiency of total petroleum hydrocarbon (TPH) in heavy petroleum-contaminated soil were investigated through laboratory simulation experiments, and the variances of soil physicochemical properties caused by thermal desorption treatment was also studied. Results showed that, comparing with the soil treated without Ca(OH)2, the removal efficiency of TPH in the soil treated with 1% Ca(OH)2 increased by 23.6% at 400 °C for 30 min. Meanwhile, the removal efficiencies of saturates, aromatics, resins, and asphaltenes increased by 17.3%, 29.3%, 18.1% and 46.7%, respectively. And the removal efficiency of asphaltenes was the highest. Ca(OH)2 could decrease the thermal activation energy and increase active sites, which significantly promoted the removal of heavy hydrocarbons in heavy petroleum-contaminated soil by thermal desorption. After thermal treated with 1% Ca(OH)2, soil viscosity decreased, then the dispersion of soil particles increased and the particle size decreased. Additionally, a thin film of char-like material coated on the surface particles. This study could provide theoretical reference for the application of thermal desorption technology to remediate the petroleum contaminated soil in China.
-
Key words:
- calcium hydroxide /
- heavy hydrocarbons /
- contaminated soil /
- thermal desorption
-
-
[1] ROSELL-MELÉ A, MORALEDA-CIBRIÁN N, CARTRÓ-SABATÉ M, et al. Oil pollution in soils and sediments from the Northern Peruvian Amazon[J]. Science of the Total Environment, 2018, 610-611: 1010-1019. doi: 10.1016/j.scitotenv.2017.07.208 [2] OBIDA C B, ALAN BLACKBURN G, DUNCAN WHUATT J, et al. Quantifying the exposure of humans and the environment to oil pollution in the Niger Delta using advanced geostatistical techniques[J]. Environment International, 2018, 111: 32-42. doi: 10.1016/j.envint.2017.11.009 [3] DOS SANTOS J J, MARANHO L T. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review[J]. Journal of Environmental Management, 2018, 210: 104-113. [4] 申圆圆. 土壤中石油污染物行为特征及植物根际修复研究[D]. 西安: 长安大学, 2012. [5] 刘五星, 骆永明, 滕应, 等. 我国部分油田土壤及油泥的石油污染初步研究[J]. 土壤, 2007, 39(2): 247-251. doi: 10.3321/j.issn:0253-9829.2007.02.015 [6] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G. Low temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400. doi: 10.1016/j.jhazmat.2010.09.046 [7] VIDONISH J, ZYGOURAKIS K, MASIELLO C, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506. [8] LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52(9): 5330-5338. [9] 沈宗泽, 陈有鑑, 李书鹏, 等. 异位热脱附技术与设备在我国污染场地修复工程中的应用[J]. 环境工程学报, 2019, 13(9): 2060-2073. [10] TRINDADE P V O, SOBRAL L G, RIZZO A C L, et al. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: A comparison study[J]. Chemosphere, 2005, 58(4): 515-522. doi: 10.1016/j.chemosphere.2004.09.021 [11] KHAN M A I, BISWAS B, SMITH E, et al. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil: A review[J]. Chemosphere, 2018, 212: 755-767. doi: 10.1016/j.chemosphere.2018.08.094 [12] TANG J C, LU X Q, SUN Q, et al. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions[J]. Agriculture Ecosystem & Environment, 2012, 149(1): 109-117. [13] LEMKAU K L, MCKENNA A M, PODGORSKI D C, et al. Molecular evidence of heavy-oil weathering following the M/V Cosco Busan spill: Insights from fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 2014, 48(7): 3760-3767. [14] FRANKLIN H D, PETERS W A, HOWARD J B. Mineral matter effects on the rapid pyrolysis and hydropyrolysis of a bituminous coal: 2. Effects of yields of C3-C8 hydrocarbons[J]. Fuel, 1982, 61(12): 1231-1217. [15] 周锦文. 钙系添加剂对煤热解行为的影响[C]//中国建筑学会建筑热能动力分会. 2011年中国建筑学会建筑热能动力分会第十七届学术交流大会暨第八届理事会第一次全会论文集. 太原, 2011: 37-39. [16] ZHOU J H, HUANG R H, TIAN S N, et al. Microtitration assay of total petroleum hydrocarbons in contaminated soils using ultrasonic extraction and multiskan spectrum[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3647-3652. [17] 谢重阁. 环境中石油污染物的分析技术[M]. 北京: 中国环境科学出版社, 1987. [18] 国家发展和改革委员会. 石油天然气行业标准: SY/T 5119-2008[S]. 北京: 石油工业出版社, 2008. [19] KOK M V, GUL K G. Thermal characteristics and kinetics of crude oils and SARA fractions[J]. Thermochimica Acta, 2013, 569: 66-70. doi: 10.1016/j.tca.2013.07.014 [20] MICHELSEN T C, BOYCE C P. Cleanup standards for petroleum hydrocarbons. Part 1. Review of methods and recent developments[J]. Soil & Sediment Contamination, 1993, 2(2): 109-124. [21] 丁卫华. Ca(OH)2对煤炭腐殖酸催化气化影响的实验研究[D]. 上海: 上海交通大学, 2008. [22] 贾永斌, 黄戒介, 程中虎, 等. 煤快速热解过程中氧化钙对焦油裂解的影响[J]. 煤炭转化, 2001(2): 53-57. doi: 10.3969/j.issn.1004-4248.2001.02.011 [23] SOLOMON P R, HAMBLEN D G, CARANGELO R M, et al. General model of coal devolatilization[J]. Energy & Fuels, 1988, 2(4): 405-422. [24] LIU Y Q, ZHANG Q, WU B, et al. Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons[J]. Journal of Hazardous Materials, 2020, 383: 121165. doi: 10.1016/j.jhazmat.2019.121165