-
磷是水体藻类生长所需的重要元素。随着工农业现代化的进程,大量污染物被直接排入江河湖泊,过量的磷元素导致水体富营养化,使得藻类生物过量繁殖产生水华,最终破坏水生态环境[1]。水环境中总磷的含量是衡量水体质量的重要指标之一。磷在水环境中主要以磷酸盐、无机磷和有机磷3种形式存在。其中,磷酸盐主要包括正磷酸盐(H3PO4、
${{\rm{H}}_2}{\mathop{\rm PO}\nolimits} _4^ - $ 、${\rm{HPO}}_4^{2 - }$ 、${\rm{PO}}_4^{3 - }$ )和聚磷酸盐等。目前,水体总磷的检测思路为,先通过强氧化剂消解[2]将水体中各种形态磷全部转化为正磷酸盐,再进行测量。我国环境水质总磷的标准检测方法主要是钼酸铵分光光度法[3]。因为测量时通常需要加温加压并添加化学试剂,所以若测量后生成的废弃试剂处理不当会造成人体伤害和环境污染等影响。其他检测方法还包括重力测定法和离子色谱法等[4-5],但这些方法操作流程复杂,响应时间慢,不适合水质连续自动监测和现场分析。近年来,电化学分析法逐渐被运用于测定无机磷酸盐含量[6]。其中,离子选择电极法因其具有操作简单、适合实时测量、环境友好、小型化、运行成本低等许多优点[7-8]引起了学者的广泛关注。然而,由于离子选择电极存在交叉敏感性,且容易受到工作环境影响,所以仍处于研究阶段,其电极检测精度和稳定性的改进成为当前研究的重点[9-12]。
金属钴被广泛应用于磷酸根离子选择电极的制备,但这类电极大多仅适用于酸性环境,且无法测定溶液中的总磷酸盐浓度。肖丹等[13]制备的钴棒电极在pH为4时,对
${{\rm{H}}_2}{\mathop{\rm PO}\nolimits} _4^ - $ 的响应斜率为50~56 mV·dec−1(dec为10倍摩尔浓度电化学标准单位),响应浓度为10−5~10−2 mol·L−1,溶液中的溶解氧量和压力大小会对测定产生影响。XU等[14]在钴电极表面涂覆磷酸钴构筑磷酸根离子选择电极,在浓度为10−5~10−1 mol·L−1时,线性响应斜率为−39 mV·dec−1,测量pH范围为4.0~6.5,可保持性能稳定性,但电极制备过程的细微偏差会影响测定结果。本课题组前期采用金属钼离子选择电极测定磷酸根离子浓度[15]时发现,在浓度为10−5~10−1 mol·L−1的
${\rm{HPO}}_4^{2 - }$ 溶液中,钼电极的响应电位与${\rm{HPO}}_4^{2 - }$ 浓度呈现良好的线性关系和较好的选择性。常见的阴离子不会干扰电极对磷酸盐的测定。在pH=8.5时,检测斜率达到(−26.9±0.5) mV·dec−1,检出限为1.9×10−6 mol·L−1,响应时间小于60 s。钼电极制备简单,且具有较好的重复性和稳定性,可至少使用3个月。但在现场检测过程中,很难保证电极测量环境与电极标定环境完全一致,被测溶液pH变化存在不确定性,同时被测溶液温度变化也会使电极响应电位产生偏移,从而使电极检测精度受到影响。本研究综合分析溶液pH和被测溶液温度对电极测量的影响,通过磷酸根在不同pH条件下的分布系数,根据能斯特方程,采用最小二乘回归分析方法,建立补偿模型消除被测溶液pH和温度变化对电极输出电位的影响,以期为提高钼电极检测精度提供解决方案。
金属钼离子选择电极对水中磷酸根离子的测定方法
Determination method of phosphate ion based on molybdenum ion selective electrode
-
摘要: 基于金属钼的离子选择电极在磷酸根离子检测过程中,被测溶液的pH、温度变化是影响电极检测精度的重要因素,研究了钼电极的输出电位与被测溶液磷酸根离子浓度、pH和温度之间的关系,探讨各干扰因素对检测结果的影响。利用磷酸根在不同pH条件下的分布系数,根据能斯特方程,采用最小二乘回归分析的方法,建立了钼电极的输出电位与磷酸根离子浓度、pH、温度之间的数学模型。结果表明:该测量模型在10−6~10−1 mol·L−1的Na2HPO4溶液中检测误差在6.33%以内;与离子色谱法检测进行对比,最大相对误差为5.50%。利用电极法结合多元线性回归模型进行溶液磷酸根离子含量的检测,可补偿被测溶液pH和温度变化对电极测量的影响,有效提高磷酸根离子选择电极的测量精度。Abstract: In the process of phosphate ion detection based on metal molybdenum ion-selective electrode, the changes of pH and temperature of the measured solution are important factors affecting the electrode detection accuracy. The relationships between the output potential of the molybdenum electrode and the phosphate ion concentration, pH value and temperature of the tested solution were studied, and the influence of various interference factors on the detection results were discussed. Based on the distribution coefficient of phosphate at different pHs and Nernst equation, a mathematical model was established with the least squares regression analysis method between the output potential of the molybdenum electrode and the phosphate ion concentration, pH and temperature. The experimental results show that the relative error of the measurement model in Na2HPO4 solution of 10−6~10−1 mol·L−1 was within 6.33%. And compared with the ion chromatography detection, the maximum relative error was 5.50%. Therefore, the electrode method combined with the multiple linear regression model for the detection of the content of phosphate ion in the environmental water can compensate the influence of the pH and temperature changes of the measured solution on the electrode measurement. This method can effectively improve the measurement accuracy of phosphate ion selective electrode.
-
Key words:
- ion selective electrode /
- phosphate /
- compensation model /
- distribution coefficient /
- temperature
-
表 1 准确率检验
Table 1. Accuracy test
摩尔浓度/(mol·L−1) pH 温度/℃ 输出电位/mV 估计浓度/(mol·L−1) 相对误差/% 1.0×10−1 11.34 28.3 558 9.820×10−2 1.86 1.0×10−2 10.82 24.6 507 1.020×10−2 1.78 1.0×10−3 10.27 19.2 451 9.646×10−4 3.54 1.0×10−4 9.75 25.6 418 9.725×10−5 2.75 1.0×10−5 9.20 32.4 384 1.049×10−5 4.95 1.0×10−6 8.92 26.5 338 1.063×10−6 6.33 表 2 本方法与离子色谱法检测结果对比
Table 2. Detection results comparison between this method and ion chromatography
质量浓度/(mg∙L−1) 电化学方法/(mg∙L−1) 离子色谱法/(mg∙L−1) 绝对误差/(mg∙L−1) 相对误差/% 5.00 5.125 5 5.029 0 0.096 5 1.92 1.00 0.975 7 0.986 3 0.010 6 1.07 0.50 0.526 8 0.511 4 0.015 4 3.01 0.10 0.103 6 0.098 2 0.005 4 5.50 0.05 0.047 7 0.049 4 0.001 7 3.44 0.01 0.010 7 0.010 3 0.000 4 3.88 -
[1] ALEXANDER T J, VONLANTHEN P, SEEHAUSEN O. Does eutrophication-driven evolution change aquatic ecosystems?[J]. Philosophical Transaction of the Royal Society of London, 2017, 372(1712): 1-10. [2] 赵丽红, 聂飞. 水处理高级氧化技术研究进展[J]. 科学技术与工程, 2019, 19(10): 1-9. doi: 10.3969/j.issn.1671-1815.2019.10.001 [3] 国家环境保护总局. 水质总磷的测定钼酸铵分光光度法: GB 11893-1989[S]. 北京: 中国环境科学出版社, 2002. [4] SHAVER L A. Determination of phosphates by the gravimetric quimociac technique[J]. Journal of Chemical Education, 2008, 85(8): 1097-1098. doi: 10.1021/ed085p1097 [5] 丁明军, 杨慧中. 水中总磷和总氮含量的离子色谱测定法[J]. 分析化学, 2012, 40(3): 381-385. [6] BERCHMANS S, ISSA T B, SINGH P. Determination of inorganic phosphate by electroanalytical methods: A review[J]. Analytica Chimica Acta, 2012, 729(11): 7-20. [7] TOPCU C, CAGLAR B, COLDUR F, et al. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor[J]. Materials Research Bulletin, 2018, 98: 288-299. doi: 10.1016/j.materresbull.2017.09.068 [8] 周宝宣, 袁琦, 秦夕淳, 等. 基于离子选择性电极的土壤重金属检测系统研究[J]. 环境科学与技术, 2015, 38(11): 179-183. [9] 张淼, 潘林沛, 阳清亮, 等. 基于斜率-截距校正算法的番茄营养液ISE监测[J]. 农业机械学报, 2018, 49(5): 349-354. [10] 陈吉勇, 陈娟. 基于离子选择电极的氯离子浓度检测的研究[J]. 自然科学版, 2016, 43(5): 95-100. [11] 吴志广, 杨慧中. 基于氨气敏电极的氨氮在线检测仪补偿模型[J]. 分析试验室, 2017, 36(3): 335-340. [12] 杜尚丰, 曹淑姝, 潘奇, 等. 电极法测定土壤硝态氮精度的提高方法[J]. 农业机械学报, 2016, 47(1): 118-125. doi: 10.6041/j.issn.1000-1298.2016.01.016 [13] 肖丹, 俞汝勤, 李军, 等. 一种新的磷酸根离子敏感电极研究[J]. 高等学校化学学报, 1994, 15(2): 193-194. doi: 10.3321/j.issn:0251-0790.1994.02.028 [14] XU K, KITAZUMI Y, KANO K, et al. Phosphate ion sensor using a cobalt phosphate coated cobaltelectrode[J]. Electrochimica Acta, 2018, 282: 242-246. doi: 10.1016/j.electacta.2018.06.021 [15] LI Y H, JIANG T Q, YU X D, et al. Phosphate sensor using molybdenum[J]. Journal of the Electrochemical Society, 2016, 163(9): 479-484. doi: 10.1149/2.0161609jes [16] CHANG C N, CHENG H B, CHAO A C. Applying the nernst equation to simulate redox potential variations for biological nitrification and denitrification processes[J]. Environmental Science & Technology, 2004, 38(6): 1807-1812. [17] 吴性良, 孔继烈. 分析化学原理[M]. 北京: 化学工业出版社, 2010.