-
目前,各个国家包括中国政府都对汞的开采、使用和人为排放制定了严格的环保法规,然而历史上因汞污染所造成的环境问题仍然存在。我国的PVC生产行业多采用电石法工艺,即氯化汞触媒生产氯乙烯单体(vinyl chloride monomer, VCM)[1],该行业存在一定的汞排放问题。有学者在武汉市某电石法PVC生产企业的退役场地0.8~1.0 m深度的土壤中检测到汞,含量有31~2 100 mg·kg−1[2]。受污染土壤中的汞主要源自生产过程中的无组织排放[3]。PVC行业VCM生产过程中氯化汞触媒的外泄和副产物单质汞的挥发和沉降是周边土壤汞污染的最主要来源[2]。由于长期粗放生产而导致的土壤汞污染问题亟待解决[3-6]。
汞污染土壤的治理是指采用各种手段将汞污染物从土壤中分离、去除,或将汞污染物固定在土壤中、将其转化为无害物质,使土壤环境得到恢复。现代土壤修复技术按原理可分为物理修复法、化学修复法和生物修复法[7-10]。物理法中的热解法能直接去除受污染土壤中的汞,修复效果最为直接,但工程化实施费用过高,阻碍了该方法的广泛应用[11-13]。化学固化/稳定化技术是指通过外加试剂,以胶结、固化或形成汞化合物的形式来限制汞的迁移,从而降低汞污染[14-16]。然而,成本高和处理后汞的长期稳定性问题使得该技术大规模使用受限。生物修复法包括植物修复法和微生物修复法,其成本较低,寻找或培养适合的植物、菌株是技术关键[17]。
本研究选取锦州市某PVC化工厂附近的汞污染土壤为样品,探索基于湿法冶金工艺原理的浸提脱汞处理方法,采用硫代硫酸盐对土壤中的汞进行络合浸提处理,考察温度、硫代硫酸钠浓度以及时间等因素对汞浸提效果的影响,并通过Förstner 7步法[18]对汞污染土壤和浸提处理后的土壤进行形态分析,再用光分解回收法对含汞浸提液进行处理,以期实现以硫化汞的形式回收汞,为土壤中汞的处理提供新的思路。
硫代硫酸盐浸提法修复汞污染土壤及含汞浸出液的光分解回收处理
Remediation of mercury contaminated soil with thiosulfate solution washing followed by photo-decomposing and separating mercury from washing solution
-
摘要: 汞污染土壤对环境的危害巨大,已成为国内外主要关注的环境问题之一。以某PVC化工厂附近的含汞土壤样品为研究对象,开展了硫代硫酸盐浸提脱汞的研究,对浸提前后的含汞土壤开展了Förstner七步顺序提取实验,考察分析了含汞土壤及浸提后土壤中汞的存在形态,并对含汞的硫代硫酸盐浸出液开展了紫外光分解、沉淀脱除汞的研究。结果表明:该土壤样品中含汞总量高达2 400 mg·kg−1;其中41.3%的Hg以水溶态、交换态、盐酸溶态和硝酸溶态形式存在,属于易释放汞;以有机质结合态和硫化态形式存在的Hg分别占33.9%和24.2%,属于稳定形态的汞。以硫代硫酸钠为浸出剂,可以有效地浸出含汞土壤中的易释放形态汞;采用0.01 mol·L−1的硫代硫酸钠溶液,在室温下浸出约6 h,可将含汞土壤中95%以上的易释放汞浸提出来,浸提后土壤中残余的汞基本上仍以有机质结合态和硫化态形式存在。对含汞11.6 mg·L−1的硫代硫酸盐浸出液,经254 nm的紫外线照射5 min,即可将99.1%以上的汞-硫代硫酸盐络合物分解转变为稳定的硫化汞沉淀,从而将汞从浸出液中分离回收。本研究表明,硫代硫酸盐浸提处理及采用紫外光分解分离回收汞可从含汞土壤中分离除去易释放形态汞。Abstract: Mercury polluted soil and related risk to the environment and human health have presented a significant concern in China and globally. In this study, the mercury contaminated soil samples from the field near a PVC factory were taken as the research object to conduct thiosulfate based Hg-washing tests. For the soil samples before and after washing, the seven steps sequential extraction tests based on Förstner methods were conducted to identify the responding Hg-species existing in these two kinds of samples. The Hg-pregnant solution was subjected to ultra-violent light exposure, photo-decomposing the Hg-thiosulfate complex and mercury removal by precipitatation. The experimental results showed that the total mercury concentration was 2400 mg·kg−1 in the contaminated soil, and 41.3% of Hg was water-soluble, ion-exchangeable, HCl-soluble, and HNO3-soluble forms which belonged to easy-released Hg-species. The organic-bound Hg and sulfide-bound Hg accounted for 33.9% and 24.2%, respectively, which belonged to the stable forms. The sodium thiosulfate solution was an effective lixiviant for the easy-released mercury in the polluted soil. About 95% of the easy-released mercury could be washed out by 0.01 mol·L−1 sodium thiosulfate within six hours at room temperature. The residue mercury in the washed soil was remained as the organic- and sulfide-bound forms. For the washing solution containing 11.6 mg·L−1 mercury, 99.1% of the Hg-thiosulfate complexes could be decomposed and precipitated as black-HgS after exposing under 254 nm UV light for five minutes, then the mercury could be separated and recovered acccordingly. The thiosulfate based washing followed by separating mercury from the pregnant washing solution with UV light photolysis is a potential remediation method for the removal of easy-released mercury from the contaminated soil. This result can provide reference for the treatment of mercury in soil.
-
Key words:
- mercury /
- thiosulfate /
- washing /
- photolysis /
- sequential extraction /
- mercury species
-
表 1 含汞土壤及浸出残渣中汞的存在形态分析结果(Förstner 7步法)
Table 1. Mercury speciation results for the contaminated soils before/after washing (Förstner’s method)
Hg存在形态 含汞土壤 浸提残渣 Hg含量/
(mg·kg−1)占比/% Hg含量1)/
(mg·kg−1)占比2)/% 水溶态 49 1.8 33 1.2 可交换态 44 1.6 13 0.5 盐酸溶态 850 30.7 120 4.3 硝酸溶态 200 7.2 40 1.4 腐植酸结合态 15 0.5 2 0.1 有机质结合态 940 33.9 890 32.2 硫化态 670 24.2 680 24.6 总和 2 768 100.0 1 778 64.2 注:1)浸提残渣中所测得的Hg含量为残渣中各形态Hg的实际质量含量;2)浸提残渣中Hg所占比例为折合原含汞土壤初始总Hg含量的相对比例。 -
[1] 曹战国, 肖国营, 曹贺鸣. 我国电石法PVC行业面对《关于汞的水俣公约》时限挑战须采取的积极措施及建议[J]. 聚氯乙烯, 2018, 46(10): 1-11. doi: 10.3969/j.issn.1009-7937.2018.10.001 [2] 章诗辞, 罗泽娇. 某聚氯乙烯树脂厂退役场地土壤汞污染特征分析[J]. 环境工程学报, 2017, 11(10): 5771-5777. doi: 10.12030/j.cjee.201611073 [3] 李宝磊, 邵春岩, 陈刚, 等. 我国含汞土壤处置新技术解析[J]. 土壤通报, 2018, 49(5): 1247-1253. [4] 邱蓉, 董泽琴, 张军方, 等. 土壤汞污染及修复措施研究进展[J]. 环保科技, 2013, 19(3): 21-26. doi: 10.3969/j.issn.1674-0254.2013.03.005 [5] 马跃峰, 武晓燕, 薛向明. 汞污染土壤修复技术的发展现状与筛选流程研究[J]. 环境科学与管理, 2015, 40(12): 107-111. doi: 10.3969/j.issn.1673-1212.2015.12.024 [6] 元相虎. 汞污染土壤无害化治理技术探讨[J]. 环境与发展, 2017, 29(9): 84-85. [7] 巩玥, 刘俐媛, 陈扬. 基于专利计量的汞污染治理技术态势分析[J]. 环境工程学报, 2019, 13(6): 1473-1487. doi: 10.12030/j.cjee.201903029 [8] 杨雨寒, 靳炜, 刘俐媛, 等. 基于SCI论文的汞污染防治领域的文献计量分析[J]. 环境工程学报, 2019, 13(6): 1488-1501. [9] 郑晓梅, 顾鑫生, 曲娜, 等. 基于中文期刊论文的汞污染防治技术的文献计量分析[J]. 环境工程学报, 2019, 13(6): 1502-1512. doi: 10.12030/j.cjee.201904006 [10] HE F, GAO J, PIERCE E, et al. In situ remediation technologies for mercury-contaminated soil[J]. Environmental Science and Pollution Research, 2015, 22(11): 8124-8147. doi: 10.1007/s11356-015-4316-y [11] 何依琳, 马福俊, 张倩, 等. 热解吸对污染土壤中不同形态汞的去除作用[J]. 环境工程学报, 2014, 8(4): 1593-1598. [12] 杨乾坤, 王兴润, 朱文会, 等. 氯盐对含汞土壤热脱附的影响[J]. 环境工程学报, 2015, 9(5): 2479-2487. doi: 10.12030/j.cjee.20150573 [13] 赵婷, 余志, 张军方, 等. 高浓度汞污染土壤低温工程性修复复垦的可行性[J]. 环境工程学报, 2017, 11(5): 3214-3219. doi: 10.12030/j.cjee.201606196 [14] 陈杰, 刘洁, 李顺奇, 等. 几种硫化物对紫色土汞的稳定化效果及优化稳定条件[J]. 环境工程学报, 2018, 12(3): 893-903. doi: 10.12030/j.cjee.201710147 [15] 王亚玲, 李述贤, 杨合. 有机改性蒙脱石负载巯基修复汞污染土壤[J]. 环境工程学报, 2018, 12(12): 3433-3439. doi: 10.12030/j.cjee.201807106 [16] 魏赢, 刘阳生. 汞污染农田土壤的化学稳定化修复[J]. 环境工程学报, 2017, 11(3): 1878-1884. doi: 10.12030/j.cjee.201512016 [17] 杨文, 陈小敏, 朱保虎, 等. 一株耐汞菌的分离鉴定及其去汞特性[J]. 环境工程学报, 2017, 11(1): 602-607. doi: 10.12030/j.cjee.201509006 [18] FÖRSTNER U. Metal speciation: General concepts and applications[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 5-23.