-
为实现“碳中和”目标,低碳脱氮新技术的开发及其工程化应用成为污水处理领域的研究热点。污水生物脱氮的主要途径为传统的硝化反硝化反应,但其工程应用仍存在能耗高且难实现低碳化的问题。厌氧氨氧化(anaerobic ammonium oxidation,anammox)可在厌氧条件下,以氨氮为电子供体、亚硝氮为电子受体,实现氨氮和亚硝氮的同步脱除并生成氮气。与传统硝化反硝化工艺相比,基于厌氧氨氧化的新工艺可有效降低曝气成本、减少污泥产量及有机碳源需求量,是未来污水生物脱氮的重要发展方向。为更好地宣传该领域最新成果,《环境工程学报》编辑部邀请李玉友、刘思彤、陈荣3位教授组织了“厌氧氨氧化生物脱氮理论与技术发展”专题。本文梳理和总结厌氧氨氧化的发现过程、理论研究、工艺发展、工程应用及其新动态,并作为该专题的代序言。
厌氧氨氧化:理论和工艺发展概述(代序言)
An overview of theoretical and technological development of anammox
-
-
[1] BRODA E. Two kinds of lithotrophs missing in nature[J/OL]. Zeitschrift für allgemeine Mikrobiologie, 1977, 17(6): 491–493 [2021–08–09]. https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.19770170611. [2] KUENEN J G. Anammox bacteria: From discovery to application [J/OL]. Nature Reviews Microbiology, 2008, 6(4): 320–326 [2019–02–22]. http://www.nature.com/articles/nrmicro1857. [3] MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J/OL]. FEMS Microbiology Ecology, 1995, 16(3): 177–183[2021–08–09]. https://academic.oup.com/femsec/article/16/3/177/523781. [4] VAN DE GRAAF A A, MULDER A, DE BRUIJN P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251. doi: 10.1128/AEM.61.4.1246-1251.1995 [5] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J/OL]. Applied Microbiology and Biotechnology 1998 50: 5, 1998, 50(5): 589–596[2021–08–10]. https://link.springer.com/article/10.1007/s002530051340. [6] STROUS M, FUERST J A, KRAMER E H M, et al. Missing lithotroph identified as new planctomycete[J/OL]. Nature, 1999, 400(6743): 446–449[2018–02–09]. http://www.nature.com/articles/22749. [7] NI B J, CHEN Y P, LIU S Y, et al. Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process[J]. Biotechnology and Bioengineering, 2009, 103(3): 490-499. doi: 10.1002/bit.22279 [8] ZHANG Y, MA H, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140. doi: 10.1016/j.biortech.2018.01.043 [9] LINDSAY M R, WEBB R I, STROUS M, et al. Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell[J]. Archives of Microbiology, 2001, 175(6): 413-429. doi: 10.1007/s002030100280 [10] STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J/OL]. Nature 2006 440: 7085, 2006, 440(7085): 790–794 [2021–08–10]. https://www.nature.com/articles/nature04647. [11] ALMEIDA N M de, NEUMANN S, MESMAN R J, et al. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis[J/OL]. Journal of Bacteriology, 2015, 197(14): 2432–2441[2021–11–05]. https://journals.asm.org/doi/abs/10.1128/JB.00186-15. [12] VAN DONGEN U, JETTEN M S M, VAN LOOSDRECHT M C M. The SHARON®-Anammox® process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1): 153-160. doi: 10.2166/WST.2001.0037 [13] TAL Y, WATTS J E M, SCHREIER S B, et al. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system[J]. Aquaculture, 2003, 215(1-4): 187-202. doi: 10.1016/S0044-8486(02)00372-1 [14] FUJII T, SUGINO H, ROUSE J D, et al. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier[J]. Journal of Bioscience and Bioengineering, 2002, 94(5): 412-418. doi: 10.1016/S1389-1723(02)80218-3 [15] LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture[J]. Water Research, 2014, 60: 1-14. doi: 10.1016/j.watres.2014.04.017 [16] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018 [17] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[Z/OL]. Elsevier, 2012: 67–79(2012–07–15)[2019–05–19]. https://www.sciencedirect.com/science/article/pii/S1385894712005864. [18] KUAI L, VERSTRAETE W. Ammonium removal by the oxygen-limited autotrophic nitrification- denitrification system[J/OL]. Applied and Environmental Microbiology, 1998, 64(11): 4500–4506 [2021–11–05]. https://journals.asm.org/doi/abs/10.1128/AEM.64.11.4500-4506.1998. [19] SLIEKERS A O, DERWORT N, GOMEZ J L C, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475-2482. doi: 10.1016/S0043-1354(01)00476-6 [20] LIEU P K, HATOZAKI R, HOMAN H, et al. Single-Stage Nitrogen Removal Using Anammox and Partial Nitritation (SNAP) for Treatment of Synthetic Landfill Leachate[J]. Japanese Journal of Water Treatment Biology, 2005, 41(2): 103-112. doi: 10.2521/JSWTB.41.103 [21] CHEN H, LIU S, YANG F, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100(4): 1548-1554. doi: 10.1016/j.biortech.2008.09.003 [22] HIPPEN A, ROSENWINKEL K H, BAUMGARTEN G, et al. Aerobic deammonification: A new experience in the treatment of waste waters[J]. Water Science and Technology, 1997, 35(10): 111-120. doi: 10.1016/S0273-1223(97)00211-4 [23] SIEGRIST H, REITHAAR S, LAIS P. Nitrogen loss in a nitrifying rotating contactor treating ammonium rich leachate without organic carbon[J]. Water Science and Technology, 1998, 37(4-5): 589-591. doi: 10.1016/S0273-1223(98)00164-4 [24] MULDER J W, VAN LOOSDRECHT M C M, HELLINGA C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Water Science and Technology, 2001, 43(11): 127-134. doi: 10.2166/WST.2001.0675 [25] VAN DER STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. doi: 10.1016/j.watres.2007.03.044 [26] FIGDORE BRYCE, NEETHLING J B, STENSEL D. Deammonification [EB/OL](2019)[2022–01–03]. https://www.waterrf.org/sites/default/files/file/2021-07/Deammonification.pdf. [27] WETT B. Solved upscaling problems for implementing deammonification of rejection water[J]. Water Science and Technology, 2006, 53(12): 121-128. doi: 10.2166/WST.2006.413 [28] WANG C C, LEE P H, KUMAR M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J/OL]. Journal of Hazardous Materials, 2010, 175(1–3): 622–628[2019–01–24]. https://www.sciencedirect.com/science/article/pii/S0304389409017038. [29] DC Water to house world’s largest deammonification system for advanced nitrogen removal | WaterWorld [EB/OL][2021–11–06]. https://www.waterworld.com/technologies/article/16215013/dc-water-to-house-worlds-largest-deammonification-system-for-advanced-nitrogen-removal. [30] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences - An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032 [31] YESHI C, HONG K B, VAN LOOSDRECHT M C M, et al. Mainstream partial nitritation and anammox in a 200, 000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor[J]. Water Science and Technology, 2016, 74(1): 48-56. doi: 10.2166/WST.2016.116 [32] LI J, PENG Y, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J/OL]. Water Research, 2019, 160: 178–187[2019–06–24].https://www.sciencedirect.com/science/article/pii/S0043135419304580. DOI:10.1016/j.watres.2019.05.070. [33] RONG C, LUO Z, WANG T, et al. Chemical oxygen demand and nitrogen transformation in a large pilot-scale plant with a combined submerged anaerobic membrane bioreactor and one-stage partial nitritation-anammox for treating mainstream wastewater at 25 °C[J]. Bioresource Technology, 2021, 341: 125840. doi: 10.1016/j.biortech.2021.125840 [34] WU J, KONG Z, LUO Z, et al. A successful start-up of an anaerobic membrane bioreactor (AnMBR) coupled mainstream partial nitritation-anammox (PN/A) system: A pilot-scale study on in-situ NOB elimination, AnAOB growth kinetics, and mainstream treatment performance[J]. Water Research, 2021, 207: 117783. doi: 10.1016/J.WATRES.2021.117783 [35] GUO Y, LUO Z, RONG C, et al. The first pilot-scale demonstration of the partial nitritation/anammox-hydroxyapatite process to treat the effluent of the anaerobic membrane bioreactor fed with the actual municipal wastewater[J]. Science of The Total Environment, 2022, 807: 151063. doi: 10.1016/J.SCITOTENV.2021.151063 [36] SHI Y, HU S, LOU J, et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor[J/OL]. Environmental Science and Technology, 2013, 47(20): 11577–11583[2021–11–16]. https://pubs.acs.org/doi/full/10.1021/es402775z. [37] CAO S, WANG S, PENG Y, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source: The effect of seeding sludge[J]. Bioresource Technology, 2013, 149: 570-574. doi: 10.1016/j.biortech.2013.09.072 [38] MA B, QIAN W, YUAN C, et al. Achieving Mainstream Nitrogen Removal through Coupling Anammox with Denitratation[J/OL]. Environmental Science and Technology, 2017, 51(15): 8405–8413 [2021–11–16]. https://pubs.acs.org/doi/full/10.1021/acs.est.7b01866. [39] MA H, ZHANG Y, XUE Y, et al. A new process for simultaneous nitrogen removal and phosphorus recovery using an anammox expanded bed reactor[J/OL]. Bioresource Technology, 2018, 267: 201–208 [2018–07–25]. https://www.sciencedirect.com/science/article/pii/S0960852418309416#f0010. [40] XUE Y, MA H, KONG Z, et al. Bulking and floatation of the anammox-HAP granule caused by low phosphate concentration in the anammox reactor of expanded granular sludge bed (EGSB)[J/OL]. Bioresource Technology, 2020, 310: 123421 [2020–05–01]. https://linkinghub.elsevier.com/retrieve/pii/S0960852420306933. [41] MA H, XUE Y, ZHANG Y, et al. Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C[J/OL]. Water Research, 2020, 172: 115510[2020–02–18]. https://linkinghub.elsevier.com/retrieve/pii/S0043135420300464. [42] GUO Y, LI Y Y. Hydroxyapatite crystallization-based phosphorus recovery coupling with the nitrogen removal through partial nitritation/anammox in a single reactor[J]. Water Research, 2020, 187: 116444. doi: 10.1016/j.watres.2020.116444 [43] SENGAR A, AZIZ A, FAROOQI I H, et al. Development of denitrifying phosphate accumulating and anammox micro-organisms in anaerobic hybrid reactor for removal of nutrients from low strength domestic sewage[J]. Bioresource Technology, 2018, 267: 149-157. doi: 10.1016/J.BIORTECH.2018.07.023 [44] ZHAO J, WANG X, LI X, et al. Advanced nutrient removal from ammonia and domestic wastewaters by a novel process based on simultaneous partial nitrification-anammox and modified denitrifying phosphorus removal[J]. Chemical Engineering Journal, 2018, 354: 589-598. doi: 10.1016/j.cej.2018.07.211