-
重金属污染由于其毒性、生物蓄积性和在自然环境中的持久性,已成为当今主要的环境问题之一。即使是微量的重金属也对人体有害,特别是镉(Cd)[1]。毒理学研究表明,Cd是毒性最强的重金属之一[2],并被全球癌症与科研组织列入第一致癌物[3]。其进入生物体后,会在生物体内富集,并通过食物链进入人体,最终会诱发人体的各种疾病。目前,去除污水中镉离子最常见的方式有化学沉淀法[4]、离子交换法[5]、膜分离法[6]、吸附法[7]等。吸附法因其高效、成本低、易操作、对环境无二次危害等优点,成为目前应用最广的方法。粉煤灰(fly ash,FA)是燃煤电厂中产生的固体废弃物。我国每年都会产生大量的FA,无法被有效利用,并且会导致环境污染。SiO2、Al2O3是FA的主要组成成分,此外,FA中富含SiO2-、Al2O3-等含有许多微小的活性通道的活性玻璃体颗粒,因而有利于吸附废水中的重金属离子[8]。但FA的比表面积和孔径较小,导致其吸附容量较小,可通过对其改性来增加吸附容量。相比于传统的改性方法如高温煅烧,水浴共沉淀法制备简便,能耗与成本较低。在碱性条件下通过水浴共沉淀法制备的层状双金属氢氧化物(layered double hydroxides,LDHs),因其具有高比表面积、粗糙多孔等优异性能而被广泛应用于吸附领域。其结构呈八面体[9],通常情况下是以带正电荷的二价金属氢氧化物和三价金属氢氧化物为层板,层间由带负电的阴离子构成[10]。张翔凌等[11]在碱性条件下采用水浴-共沉淀法制备了ZnAl-LDHs、ZnFe-LDHs并覆膜改性麦饭石,发现ZnFe-LDHs改性麦饭石的吸附性能远高于ZnAl-LDHs,且有较好的再生性能。故本研究拟用吸附和再生性能较好的ZnFe-LDHs作为改性前体,并将其负载于粉煤灰,制备ZnFe-LDHs改性粉煤灰(ZFLFA),且探究了其对Cd2+吸附的影响因素及可能的吸附机理,以期为改性粉煤灰应用于废水中Cd2+的吸附提供参考。
ZnFe-LDHs改性粉煤灰对模拟废水中镉离子的吸附性能
Adsorption performance of ZnFe-LDHs modified fly ash to cadmium ions in simulated wastewater
-
摘要: 在碱性条件下利用共沉淀法制备了ZnFe层状双金属氢氧化物(ZnFe-LDHs)改性的粉煤灰,用以去除废水中镉离子。采用BET、SEM、XRF、XRD和FTIR等对改性粉煤灰进行了表征,并研究了其对Cd2+吸附特性。结果表明,经ZnFe-LDHs改性后,粉煤灰表面形态发生了较大改变,比表面积与平均孔径均有较大增加;改性粉煤灰对模拟废水中镉离子吸附过程符合Langmuir吸附等温模型和准二级动力学模型,3个温度(25、35、45 ℃)下的理论最大饱和吸附容量分别为40.83、44.07、47.51 mg·g−1,属于以化学吸附为主的单分子层吸附;吸附反应为自发的吸热反应;吸附机理为表面络合、表面诱导沉淀与离子交换。以上研究结果可为实际废水除镉提供参考。Abstract: Fly ash modified by ZnFe layered bimetallic hydroxides (ZnFe-LDHs) was prepared by coprecipitation under alkaline conditions to remove cadmium ions from wastewater. BET, SEM, XRF, XRD, and FTIR were used to characterize ZnFe-LDHs, and its adsorption properties to Cd2+ were studied. The results show that after ZnFe-LDHs modification, the surface morphology of fly ash changed greatly, and the specific surface area and average pore diameter increased significantly. The adsorption process of ZnFe-LDHs to Cd2+ conformed to Langmuir adsorption isothermal model and quasi second-order kinetic model. The theoretical maximum saturated adsorption capacities at three temperatures (25, 35 and 45℃) were 40.83, 44.07 and 47.51 mg·g−1, respectively, which belonged to monolayer adsorption dominated by chemical adsorption. The adsorption reaction was a spontaneous endothermic reaction. The adsorption mechanisms involved surface complexation, surface-induced precipitation and ion exchange. This study can provide a reference for cadmium removal from actual wastewater.
-
Key words:
- fly ash /
- ZnFe-LDHs /
- modification /
- cadmium /
- adsorption
-
表 1 改性前后粉煤灰的结构参数
Table 1. Structural parameters of fly ash before and after modification
样品 BET比表面积/(m2·g−1) 平均孔径/nm 总孔容积/(cm3·g−1) FA 0.67 10.4 0.001 9 ZFLFA 5.68 19.0 0.029 表 2 改性前后粉煤灰的XRF分析结果
Table 2. XRF analysis results of fly ash before and after modification %
样品 SiO2 Al2O3 Fe2O3 CaO K2O ZnO 其它 FA 54.04 23.64 9.82 4.27 3.98 0.05 4.25 ZFLFA 37.49 16.03 19.76 2.62 1.95 18.87 3.28 注:表中数据为检测项目占总质量的百分比。 表 3 FA与ZFLFA除镉效果的对比
Table 3. Comparison of cadmium removal effects between FA and ZFLFA
材料 初始质量浓度/(mg·L−1) 投加量/(g·L−1) pH 吸附温度/℃ 吸附时间/min 吸附量/(mg·g−1) FA 100 3 6 25 120 10.88 ZFLFA 100 3 6 25 120 32.12 表 4 ZFLFA对Cd2+的吸附等温线参数
Table 4. Adsorption isotherm parameters of Cd2+ on ZFLFA
温度/℃ Langmuir Freundlich Temkin qm/(mg·g−1) KL/(L·mg−1) R2 KF/(mg1-n·g−1·Ln) 1/n R2 KT b R2 25 40.83 1.770 0.988 1 22.16 0.121 7 0.804 2 250.7 3.951 0.902 5 35 44.07 1.724 0.963 9 23.25 0.130 0 0.865 8 216.7 4.364 0.955 4 45 47.51 2.343 0.981 4 25.95 0.122 5 0.837 3 397.9 4.437 0.932 5 表 5 ZFLFA对Cd2+的吸附动力学参数
Table 5. Adsorption kinetic parameters of Cd2+ on ZFLFA
准一级动力学 准二级动力学 Elovich动力学 qe /(mg·g−1) K1/min−1 R2 qe/(mg·g−1) K2/(g·(mg·min)−1) R2 a/(mg·g−1) b/(mg·g−1) R2 30.64 0.1557 0.9753 32.71 0.0081 0.9991 15.78 3.462 0.9790 表 6 ZFLFA对Cd2+的吸附热力学参数
Table 6. Adsorption thermodynamic parameters of Cd2+ on ZFLFA
温度/K ΔGθ/
(KJ·mol-1)ΔHθ/
(KJ·mol-1)ΔSθ/
(J·(mol·K)-1)R2 288.15 -4.99 49.85 189.39 0.988 3 293.15 -6.02 49.85 189.39 0.988 3 298.15 -6.97 49.85 189.39 0.988 3 303.15 -7.54 49.85 189.39 0.988 3 308.15 -8.62 49.85 189.39 0.988 3 318.15 -10.85 49.85 189.39 0.988 3 -
[1] 李显波, 叶军建, 刘志红, 等. 粉煤灰微波碱熔辅助水热合成沸石及其对水溶液中Cd(Ⅱ)的强化吸附作用[J]. 中南大学学报(英文版), 2018, 25(1): 9-20. [2] MEDELLIN-CASTILLO NA, PADILLA-ORTEGA E, REGULES-MARTINEZ MC, et al. Single and competitive adsorption of Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste[J]. Sustainable Environment Research, 2017, 27: 61-69. doi: 10.1016/j.serj.2017.01.004 [3] 张彤, 张长平, 陈亚博, 等. 纤维素/沸石复合材料的制备、表征及吸附性能研究[J]. 河北工业大学学报, 2018, 47(6): 80-86. [4] 谭浩强, 吴维, 刘志滨, 等. 化学沉淀法去除水中镉的特性研究[J]. 供水技术, 2010, 4(4): 9-11. doi: 10.3969/j.issn.1673-9353.2010.04.003 [5] 杨莉丽, 康海彦, 李娜, 等. 离子交换树脂吸附镉的动力学研究[J]. 离子交换与吸附, 2004, 4(2): 138-143. doi: 10.3321/j.issn:1001-5493.2004.02.007 [6] 王岩, 王玉军, 骆广生, 等. 中空纤维膜萃取镉离子的研究[J]. 化学工程, 2002(5): 62-65. doi: 10.3969/j.issn.1005-9954.2002.05.013 [7] XU H, HU X J, CHEN Y H, et al. Cd(II) and Pb(II) absorbed on humic acid-iron-pillared bentonite: Kinetics, thermodynamics and mechanism of adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 612: 126005. doi: 10.1016/j.colsurfa.2020.126005 [8] 黄训荣, 赵航航, 张贵宾, 等. 改性粉煤灰对废水中镉的吸附作用[J]. 应用生态学报, 2019, 30(9): 3215-3223. [9] SHI Y L, LI J Q, ZHANG B Y, et al. Tuning electronic structure of CoNi LDHs via surface Fe doping for achieving effective oxygen evolution reaction[J]. Applied Surface Science, 2021, 565: 150506. doi: 10.1016/j.apsusc.2021.150506 [10] CHEERA P, HUA T, QIN Q L, et al. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications[J]. Journal of Molecular Liquids, 2019, 289: 111114. doi: 10.1016/j.molliq.2019.111114 [11] 陈丽红, 张翔凌, 何春艳, 等. Zn-LDHs覆膜改性麦饭石对Cd(Ⅱ)吸附性能及其作用机理研究[J]. 环境科学学报, 2019, 39(12): 4004-4014. [12] JOHNSTON A L, LESTER E, WILLIAMS O, et al. Understanding layered double hydroxide properties as sorbent materials for removing organic pollutants from environmental waters[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105197. doi: 10.1016/j.jece.2021.105197 [13] LI H, DAI M W, DAI S L, et al. Methylene blue adsorption properties of mechanochemistry modified coal fly ash[J]. Human and Ecological Risk Assessment:An International Journal, 2018, 24(8): 1-9. [14] YUAN Z Y, REN T Z, VANTOMME A, et al. Facile and generalized preparation of hierarchically mesoporous macroporous binary metal oxide materials[J]. Chemistry of Materials, 2004, 16(24): 5096-5106. doi: 10.1021/cm0494812 [15] WANG J, HAO J, LIU D, et al. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning[J]. Nanoscale, 2017, 9(28): 9787-9791. doi: 10.1039/C7NR03084C [16] JOSEPH IV, TOSHEVA L, DOYLE AM. Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103895. doi: 10.1016/j.jece.2020.103895 [17] WANG WW, ZHOU JB, ACHARI G, et al. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457: 33-40. [18] 张倩. 层状双金属氢氧化物除磷材料及氨基酸插层改性性能研究[D]. 重庆: 重庆大学, 2018. [19] RAJESHKHANNA G, KANDULA S, SHRESTHA KR, et al. A new class of Zn1-xFex -oxyselenide and Zn1-xFex-LDH nanostructured material with remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities for overall water splitting[J]. Small, 2018, 14(51): 1803638. doi: 10.1002/smll.201803638 [20] 边靖, 王艳芳, 赫俊国, 等. 微波-碱改性粉煤灰钝化贮存污泥中Cu、Zn的研究[J]. 中国给水排水, 2016, 32(13): 91-95. [21] SHEN YF, ZHOU PT, SHAO QF. Porous silica and carbon derived materials from rice husk pyrolysis char[J]. Microporous and Mesoporous Materials, 2014, 188: 46-76. doi: 10.1016/j.micromeso.2014.01.005 [22] FRANUS W, WDOWIN M, FRANUS M. Synthesis and characterization of zeolites prepared from industrial fly ash[J]. Environmental Monitoring & Assessment, 2014, 186(9): 5721-5729. [23] ZHOU HG, JIANG ZM, WEI SQ, et al. Adsorption of Cd(II) from aqueous solutions by a novel layered double hydroxide FeMnMg-LDH[J]. Water, Air, & Soil Pollution, 2018, 229(3): 1-16. [24] 杨雅芃, 张超兰, 陈俊先, 等. KOH活化制备蚕沙基生物炭及其对镉的吸附特性[J]. 环境工程学报, 2021, 15(11): 3504-3514. doi: 10.12030/j.cjee.202107123 [25] SHAN RR, YAN LG, YANG K, et al. Adsorption of Cd(II) by Mg–Al–CO3- and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies[J]. Journal of Hazardous Materials, 2015, 299: 42-49. doi: 10.1016/j.jhazmat.2015.06.003