-
类金属砷是自然界(大气、土壤、水等环境介质)中普遍存在的元素,对人体有一定的毒性作用,易致癌[1]。自然条件下砷的释放很少达到对人体有害的程度,砷的释放、迁移和污染大多是由人类活动造成的,包括含砷矿物的开采、冶炼以及含砷物质的使用[2]。在我国,有超过15万km2的地区,近2 000万人生活在砷含量超过10 μg·L−1(WTO饮用水标准)水高砷污染区中;全世界约有2×109人受到高砷暴露的威胁[3]。因此,开发合理、高效的砷污染治理技术对保护人类健康、保障饮水安全具有重要意义。
砷在污染水体中主要形态为+3价(还原环境,亚砷酸根(AsO33−))和+5价(氧化环境,砷酸根(AsO43−)),其中,As(Ⅲ)毒性约为As(V)的25~60倍[4]。依据砷的不同形态及包括吸附、氧化-还原和混凝-沉淀等去除原理,目前治理砷污染水体的方法主要有离子交换和膜分离技术[5-6]、混凝沉淀法[7]、吸附法[8]和生物修复技术[9]。其中,离子交换法和膜分离技术是最有效的去除方法,但因使用价格昂贵,很难推广应用;混凝沉淀和吸附法,作为传统的水净化方法,需要消耗大量的化学制品,且因砷污染水体中含有复杂的有机物和竞争离子存在,使去除效果成为一项重大挑战;生物修复技术因其应用成本低和环境友好性等优势受到广泛关注,但因修复效率低,处理时间长和适宜生长环境控制较难的问题而受到很大限制。
近年来,基于铁碳微电解材料产生微原电池反应去除水体污染物的处理方法,受到越来越多研究者的关注[10]。该方法利用铁碳微电解材料兼具催化氧化、絮凝沉淀和氧化还原等污染物去除原理,具有效果稳定,应用范围广,操作方便等优点[11-12]。但传统铁碳微电解材料主要是将还原铁粉或废铁屑、工业碳粉和一定的粘结剂按照一定比例混匀由固定模具压制成型后通过高温烧结制备完成[13],需消耗大量碳粉和粘结剂等工业制成品,提升了制备成本。并且工业粘结剂在高温焙烧下易板结,不利于铁碳材料烧制过程中孔隙结构的产生,在砷污染水体的去除过程中,降低了Fe-C反应电极与含砷废水的接触面积,阻碍微原电池反应过程中的电子转移,去除效率不佳[14-15]。
鉴于此,在笔者所在团队前期研究基础上[16],提出了一种利用人工湿地芦苇制备得到的植物粉末取代工业碳粉,膨润土作为支撑剂和粘结剂,与还原铁粉(Fe0)按一定添加比例混匀,在一次性梯度升温条件下烧制成型的制备工艺。此外,有研究表明,植物基生物质材料在碳化后,具有较好稳定性和电化学性能,与还原性铁Fe0形成持续的Fe-C微原电池反应,而被当做良好的阴极材料[17]。但在一定的烧制温度下,碳基材料的性质如电子传递、稳定性和氧化还原能力,在很大程度上由其生物质前驱体的不同组分(半纤维素、纤维素和木质素)决定[18]。因此,本研究采用响应面法探究芦苇叶和芦苇秆植物基铁碳微电解材料最优制备条件,并且探讨了2种植物基中各主要生物质组分与制备条件相互作用对铁碳微电解材料除As(Ⅲ)效率与机理的影响,以期为铁碳微电解材料优化制备及其应用于含砷废水的处理提供参考。
不同生物质组分对铁碳微电解材料制备及As(Ⅲ)去除效率的影响
Effects of different biomass components on the preparation of Fe-C microelectrolytic materials and As(III) removal efficiency
-
摘要: 以湿地植物芦苇、还原铁粉和膨润土为原材料,通过“均质化—碳化—焙烧”工艺,制备用于去除水体中As(Ⅲ)的植物基铁碳微电解材料,对其采用傅里叶红外光谱(FIR)、元素分析、X射线衍射分析及热重差热综合热分析(TGA)等方法进行系统表征,结合响应面优化研究对比得到不同植物基生物质前驱体(芦苇秆和芦苇叶)的不同组分(半纤维素、纤维素和木质素)对植物基铁碳微电解材料性能的影响。通过响应面模型获得的优化制备条件为:芦苇秆植物基铁碳微电解材料为Fe/C=1.06、碳化温度507.87 ℃、焙烧温度751.92 ℃,芦苇叶植物基铁碳微电解材料为Fe/C=1.01、碳化温度498.66 ℃、焙烧温度701.09 ℃,在此条件下5 g制备得到的材料对100 mL 10 mg·L−1 NaAsO2去除率分别为98.12%和97.22%。结果表明:在植物基生物质前驱体的不同组分中,纤维素和半纤维素含量越高,较低的碳化和焙烧温度能降低材料中灰分含量,提高有效碳元素质量分数,增加微原电池数量;木质素含量越高,高焙烧温度下,氧化及电子传递能力越强,有利于As(Ⅲ)转化为As(Ⅴ),从而提高As(Ⅲ)的去除效率。Abstract: A plant-based iron carbon microelectrolysis material for removing As(III) from water was prepared by using reed, reduced iron powder and bentonite as raw materials through a homogenization-carbonization-roasting process. It was characterized by Fourier transform infrared spectroscopy (FTIR), Elemental analysis, X-ray diffraction (XRD) and Thermogravimetric differential thermal synthesis (TGA). The effects of different components (hemicellulose, cellulose and lignin) of different plant-based biomass precursors (reed stalk and reed leaf) on the properties of plant-based Fe-C microelectrolytic materials were compared by response surface optimization. The optimal preparation conditions obtained by response surface model were as follows: Fe/C of 1.06, carbonization temperature of 507.87 ℃ and roasting temperature of 751.92 ℃; Fe/C of 1.01, carbonization temperature of 498.66 ℃ and roasting temperature of 701.09 ℃. The removal rates of 100 mL 10 mg·L−1 NaAsO2 by 5 g material based on above two conditions were 98.12% and 97.22%, respectively. The results showed that in different components of plant-based biomass precursors, the higher the content of cellulose and hemicellulose, the lower the carbonization and calcination temperature, as well as the lower the ash content, the higher the effective carbon content, and the higher the number of microgalvanic cells. The higher the lignin content is, the stronger the oxidation and electron transfer capacity is at high roasting temperature, which was conducive to the conversion of As (Ⅲ) to As (Ⅴ) and the improvement of As (Ⅲ) removal efficiency.
-
Key words:
- iron carbon microelectrolysis material /
- response surface method /
- As(Ⅲ) /
- reed /
- sintering temperature
-
表 1 湿地植物基材料的理化性质(基于干基计算)
Table 1. Physicochemical properties of plant - based materials in wetland
样品名称 元素组成% 原子比 灰分% C H N O S H/C O/C (O+N/C) 芦苇叶 39.42 3.65 1.05 49.49 0.12 1.11 0.94 0.96 8.37 芦苇秆 44.64 4.42 1.84 44.93 0.09 1.19 0.75 0.79 7.76 注:O%=100%-(C%-N%+H%+S%+灰分%) 表 2 Box-Behnken 设计实验因素与水平
Table 2. Factors and levels in Box-Behnken design
水平 因素 A(铁碳摩尔比(Fe/C)) B(碳化温度/ ℃) C(焙烧温度/ ℃) −1(低水平) 0.8 450 600 0(中水平) 1.0 500 700 1(高水平) 1.2 550 800 表 3 Box-Bennken响应面实验设计及结果
Table 3. Box-Behnken response surface experiment design and results
实验
编号因素 As(Ⅲ)去除率
(芦苇秆)/%As(Ⅲ)去除率
(芦苇叶)/%A B C 1 0.8 450 700 85.47 90.71 2 1.2 450 700 91.86 94.02 3 0.8 550 700 90.83 92.26 `4 1.2 550 700 95.36 96.26 5 0.8 500 600 70.36 74.71 6 1.2 500 600 76.39 78.44 7 0.8 500 800 96.49 87.78 8 1.2 500 800 99.26 93.26 9 1 450 600 70.18 72.43 10 1 550 600 76.68 80.36 11 1 450 800 96.14 93.25 12 1 550 800 97.48 87.58 13 1 500 700 95.53 98.33 14 1 500 700 96.05 98.36 15 1 500 700 95.81 99.12 16 1 500 700 96.42 98.92 17 1 500 700 96.63 98.56 表 4 回归方程可行性分析
Table 4. Feasibility analysis of regression equation
模型项 芦苇秆 芦苇叶 F值 P值 F值 P值 模型 582.18 <0.000 1 777.89 <0.000 1 A-Fe/C 163.52 <0.000 1 193.40 <0.000 1 B-碳化温度 113.79 0.001 7 25.94 0.001 4 C-焙烧温度 3 764.79 <0.000 1 2 216.75 <0.000 1 AB 2.82 0.136 8 0.674 8 0.438 5 AC 7.15 0.031 8 4.34 0.045 7 BC 21.73 0.002 3 262.14 <0.000 1 A2 73.59 <0.000 1 161.55 <0.000 1 B2 115.10 <0.000 1 179.73 <0.000 1 C2 895.90 <0.000 1 3 735.07 <0.000 1 失拟项 2.27 0.222 7 2.04 0.250 9 R2 0.998 7 0.999 0 Radj 0.997 0 0.997 7 RPred 0.985 8 0.989 7 精密度 70.043 1 81.958 7 注:P <0.05表示差异显著。 表 5 不同温度烧制下植物基碳化成分的元素组成和原子比
Table 5. Elemental composition and atomic ratio of plant-based carbonization components fired at different temperatures
样品 元素组成/% 原子比 灰分/% C H N O S H/C O/C (O+N/C) 芦苇叶300 45.12 3.25 1.52 36.76 0.16 0.86 0.63 0.64 16.23 芦苇叶400 50.76 3.12 2.46 26.07 0.17 0.74 0.39 0.43 22.34 芦苇叶500 48.15 2.19 1.92 21.16 0.16 0.55 0.33 0.36 30.26 芦苇叶600 46.12 2.04 1.76 15.02 0.19 0.53 0.24 0.28 38.39 芦苇叶700 44.23 1.63 1.71 9.24 0.32 0.44 0.16 0.19 46.29 芦苇叶800 41.23 1.14 1.29 7.37 0.17 0.33 0.13 0.16 51.38 芦苇秆300 51.58 4.23 1.77 35.06 0.54 0.98 0.51 0.54 10.36 芦苇秆400 57.21 3.02 2.42 24.82 1.05 0.63 0.33 0.36 16.32 芦苇秆500 59.39 2.27 2.13 14.49 0.95 0.46 0.18 0.21 25.03 芦苇秆600 61.54 1.45 1.94 7.02 1.26 0.28 0.09 0.58 30.67 芦苇秆700 63.25 1.13 2.61 5.36 0.83 0.21 0.07 0.10 32.04 芦苇秆800 52.49 1.09 1.98 4.75 0.75 0.25 0.07 0.10 43.28 注:O%=100%-(C%-N%+H%+S%+灰分%) 表 6 各植物基铁碳微电解材料最优制备条件
Table 6. The optimum preparation conditions of plant-based Fe-C microelectrolysis materials
碳基
材料Fe/C
摩尔比碳化温度
/℃焙烧温度
/℃As(Ⅲ)去除率/% 相对偏差/% 预测值 实验值 芦苇秆 1.06 507.87 751.92 99.19 98.12 1.07 芦苇叶 1.01 498.65 701.09 98.66 97.22 1.46 -
[1] 张维, 齐丽娟, 宁钧宇, 等. 砷的健康危害评估[J]. 毒理学杂志, 2021, 35(5): 367-372. doi: 10.16421/j.cnki.1002-3127.2021.05.002 [2] ZONG L H, SEN L T, PING N. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin[J]. Journal of Rare Earths, 2012, 30(6): 563-572. doi: 10.1016/S1002-0721(12)60092-1 [3] BO Y, YAN L. Preparation and application of modified biochar for arsenic pollution remediation[J]. International Core Journal of Engineering, 2021, 7(11): 46-50. [4] 马杰. 砷在含水介质中迁移转化的胶体效应[D]. 北京: 中国地质大学, 2016. [5] RUI P L, JIU H Q, et al. Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water[J]. Journal of Environmental Sciences, 2021, 110(12): 178-188. [6] 王钟辉, 张祥剑, 曾伍祥, 等. YT膜分离技术在有色冶炼行业脱砷中应用[C]//第四届全国膜分离技术在冶金工业中应用研讨会论文集. 2014: 44-47. [7] NING W, NAN N W, LI T, et al. Removal of aqueous As(III) Sb(III) by potassium ferrate (K2FeO4 ): The function of oxidation and flocculation[J]. Science of the Total Environment, 2020, 726: 138541. doi: 10.1016/j.scitotenv.2020.138541 [8] AYAN D, ABHIJT M. Hydrogeochemical characteristics and its role in controlling arsenic mobilization in a shallow aquifer[J]. Acta Geochimica, 2021, 40(6): 1-14. [9] LINA G. Research on bioremediation technology of soil heavy metal arsenic pollution[J]. International Core Journal of Engineering, 2021, 7(9): 74-76. [10] XIAO Y W, CHUN X L, SHOU F Y, MI L, et al. Uranium (VI) removal from aqueous solution using iron-carbon micro-electrolysis packing[J]. Separation and Purification Technology, 2020, 234: 116104. doi: 10.1016/j.seppur.2019.116104 [11] 吉冰冰, 于英潭, 肖玫, 等. 响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷[J]. 环境工程学报, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141 [12] 杜利军, 付兴民, 惠贺龙, 等. 新型铁碳微电解填料制备与除磷性能评价[J]. 环境工程学报, 2020, 14(6): 1421-1427. doi: 10.12030/j.cjee.201903030 [13] 戚永洁, 张波, 蒋素英, 等. 铁碳微电解工艺中的填料板结钝化[J]. 印染, 2017, 43(4): 43-46. [14] 杜利军. 新型铁碳填料的制备与废水除磷性能研究[D]. 合肥: 中国科学院大学(中国科学院过程工程研究所), 2019. [15] ZHAO H D, NIE T, ZHAO H X, et al. Enhancement of Fe-C micro-electrolysis in water by magnetic field: Mechanism, influential factors and application effectiveness[J]. Journal of Hazardous Materials, 2020, 410: 124643. [16] 李密, 谌书, 王彬, 等. 人工湿地植物炭基材料特性及铁碳微电解填料制备[J]. 地球与环境, 2021, 49(1): 82-91. doi: 10.14050/j.cnki.1672-9250.2020.48.106 [17] LI X J, HAI L, QIANG K, et al. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater[J]. Water Research, 2020, 169(C): 127272. [18] MASUD H, YAN J L, RAVI N, et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis[J]. Science of the Total Environment, 2020, 744: 140714. doi: 10.1016/j.scitotenv.2020.140714 [19] 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 直接还原铁 亚铁含量的测定 三氯化铁分解重铬酸钾滴定法: GB/T 38812.2-2020 [S]. 北京: 中国环境科学出版社, 2020. [20] 杨俊. 高温高压下Fe_3C状态方程研究[D]. 武汉: 武汉理工大学, 2019. [21] 陶厚永, 曹伟. 多项式回归与响应面分析的原理及应用[J]. 统计与决策, 2020, 36(8): 36-40. doi: 10.13546/j.cnki.tjyjc.2020.08.007 [22] 王永菲, 王成国. 响应面法的理论与应用[J]. 中央民族大学学报(自然科学版), 2005(3): 236-240. [23] ABDELKADER H, KARIM M, CHERIF B, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates[J]. Construction and Building Materials, 2019, 209: 425-436. doi: 10.1016/j.conbuildmat.2019.03.119 [24] KUMAR S, MAZUMDER R. Development and optimization of venlafaxine hydrochloride floating microspheres using response surface plots[J]. Marmara Pharmaceutical Journal, 2018, 22(2): 277-285. doi: 10.12991/mpj.2018.65 [25] KLUPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar).[J]. Environmental science & technology, 2014, 48(10): 5601-5611. [26] VIJAYARAGHAVN K. Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications[J]. Environmental Technology Reviews, 2019, 8(1): 47-64. doi: 10.1080/21622515.2019.1631393 [27] OBEMAH D, BAOWEI Z, WEI Z. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview[J]. Advances in Materials Science and Engineering, 2014, 2014: 1-12. [28] 崔孝强. 水体修复植物基生物炭的环境应用及其机理研究[D]. 杭州: 浙江大学, 2018. [29] 张月. 生物炭的氧化还原机制及其环境应用[D]. 上海: 上海交通大学, 2019. [30] WEI W M, YU X H, CHUN Y X, et al. The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment[J]. Bioresource Technology, 2018, 271: 84-90. [31] RABIA A, HAMNA B, IRSHAD B, et al. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions[J]. Chemical Engineering Journal, 2020, 396(C): 125195. [32] YU Q S, IRIS K M, DANIEL C, et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater[J]. Ecology Environment & Conservation, 2019, 124: 521-532. [33] 陈勇, 李义久, 唐文伟. 铁炭微电解法预处理富马酸有机废水的研究[J]. 工业用水与废水, 2003(6): 52-54. doi: 10.3969/j.issn.1009-2455.2003.06.016 [34] 张晓. Fe_3C基电极材料的制备及电催化性能的研究[D]. 西安: 陕西科技大学, 2021. [35] LING Z, XIN D C, ONDREJ M, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 15(4): 256-257. [36] JUDY A L, KYOUNG S R, CLAUDIA K, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1): 71-106. [37] MARTIN P K, IGNACIO F C, AIDA N, et al. A multivariate curve resolution evaluation of an in-situ atr-ftir spectroscopy investigation of the electrochemical reduction of graphene oxide[J]. Electrochimica Acta, 2017, 255: 160-167. doi: 10.1016/j.electacta.2017.09.124 [38] JUAN H, YAO X, JING C T, HONG K C, et al. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect[J]. Science of the Total Environment, 2019, 48(7): 768-777. [39] SHA S L, LIM I S, HUA Z, et al. Quantifying the contributions of surface area and redox-active moieties to electron exchange capacities of biochar[J]. Journal of Hazardous Materials, 2020, 394: 122541. doi: 10.1016/j.jhazmat.2020.122541 [40] LUISA B, JONAS M, THOMAS A, et al. The effect of the biomass components lignin, cellulose and hemicellulose on tga and fixed bed pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 12(1): 177184. [41] HAN P C, ZI H L, XU C, et al. Comparative pyrolysis behaviors of stalk, wood and shell biomass: Correlation of cellulose crystallinity and reaction kinetics[J]. Bioresource Technology, 2020, 310(C): 123498.