Steffens G C, Biewald R, Buse G. Cytochrome c oxidase is a three-copper, two-heme: A protein[J]. European Journal of Biochemistry, 1987, 164(2): 295-300
|
Helman S L, Zhou J, Fuqua B K, et al. The biology of mammalian multi-copper ferroxidases[J].Biometals, 2023, 36(2): 263-281
|
Bertinato J, L’Abbé M R. Copper modulates the degradation of copper chaperone for Cu, Zn superoxide dismutase by the 26 S proteosome[J]. The Journal of Biological Chemistry, 2003, 278(37): 35071-35078
|
Xue Q, Kang R, Klionsky D J, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195
|
Zhi M Y, Tang P, Liu Y, et al. Effects of organic copper on growth performance and oxidative stress in mice[J]. Biological Trace Element Research, 2020, 194(2): 455-462
|
Denoyer D, Clatworthy S A S, Cater M A. Copper complexes in cancer therapy[J]. Metal Ions in Life Sciences, 2018, 18. doi: 10.1515/9783110470734-022
|
Jiang Y C, Huo Z Y, Qi X L, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine, 2022, 17(5): 303-324
|
Perlatti F, Martins E P, de Oliveira D P, et al. Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem environmental quality[J]. Chemosphere, 2021, 262: 127843
|
Donnachie R L, Johnson A C, Moeckel C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution, 2014, 194: 17-23
|
Li Y, Mu D, Wu H Q, et al. Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity[J]. Environmental Pollution, 2022, 308: 119666
|
Li C M, Wang H C, Liao X L, et al. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades[J]. Journal of Hazardous Materials, 2022, 424(Pt A): 127312
|
Gaetke L M, Chow-Johnson H S, Chow C K. Copper: Toxicological relevance and mechanisms[J]. Archives of Toxicology, 2014, 88(11): 1929-1938
|
Lizaola-Mayo B C, Dickson R C, Lam-Himlin D M, et al. Exogenous copper exposure causing clinical Wilson disease in a patient with copper deficiency[J]. BMC Gastroenterology, 2021, 21(1): 278
|
Chen L Y, Min J X, Wang F D. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 378
|
Yuan H J, Xue Y T, Liu Y. Cuproptosis, the novel therapeutic mechanism for heart failure: A narrative review[J]. Cardiovascular Diagnosis and Therapy, 2022, 12(5): 681-692
|
Ge E J, Bush A I, Casini A, et al. Connecting copper and cancer: From transition metal signalling to metalloplasia[J]. Nature Reviews Cancer, 2022, 22(2): 102-113
|
Feng J F, Lu L, Zeng P, et al. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients[J]. International Journal of Clinical Oncology, 2012, 17(6): 575-583
|
Bremner I. Manifestations of copper excess[J]. The American Journal of Clinical Nutrition, 1998, 67(5 Suppl.): 1069S-1073S
|
Ejaz H W, Wang W, Lang M L. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches[J]. International Journal of Molecular Sciences, 2020, 21(20): 7660
|
Shribman S, Marjot T, Sharif A, et al. Investigation and management of Wilson’s disease: A practical guide from the British Association for the Study of the Liver[J]. The Lancet Gastroenterology & Hepatology, 2022, 7(6): 560-575
|
Shribman S, Poujois A, Bandmann O, et al. Wilson’s disease: Update on pathogenesis, biomarkers and treatments[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2021, 92(10): 1053-1061
|
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261
|
Rowland E A, Snowden C K, Cristea I M. Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease[J]. Current Opinion in Chemical Biology, 2018, 42: 76-85
|
Vallières C, Holland S L, Avery S V. Mitochondrial ferredoxin determines vulnerability of cells to copper excess[J]. Cell Chemical Biology, 2017, 24(10): 1228-1237.e3
|
Brancaccio D, Gallo A, Piccioli M, et al.[4Fe-4S]cluster assembly in mitochondria and its impairment by copper[J]. Journal of the American Chemical Society, 2017, 139(2): 719-730
|
Chen J, Jiang Y H, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. European Journal of Physiology, 2020, 472(10): 1415-1429
|
Radtke F, Heuchel R, Georgiev O, et al. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter[J]. The EMBO Journal, 1993, 12(4): 1355-1362
|
Qi Y, Wei S T, Xin T, et al. Passage of exogeneous fine particles from the lung into the brain in humans and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2117083119
|
Han H, Nakaoka H J, Hofmann L, et al. The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1[J]. Nature Cell Biology, 2022, 24(1): 74-87
|
Liu W, Zhang S P, Li Q J, et al. Lactate modulates iron metabolism by binding soluble adenylyl cyclase[J]. Cell Metabolism, 2023, 35(9): 1597-1612.e6
|
Lai Y R, Sugawara N. Outputs of hepatic copper and cadmium stimulated by tetrathiomolybdate (TTM) injection in Long-Evans Cinnamon (LEC) rats pretreated with cadmium, and in Fischer rats pretreated with copper and cadmium[J]. Toxicology, 1997, 120(1): 47-54
|
Ostrakhovitch E A, Cherian M G. Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells[J]. Apoptosis: An International Journal on Programmed Cell Death, 2005, 10(1): 111-121
|
Liao Y, Zhao J J, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis[J]. Nature Communications, 2020, 11(1): 900
|
Li G N, Zhao X J, Wang Z, et al. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 317
|
Liao J Z, Hu Z Y, Li Q W, et al. Endoplasmic reticulum stress contributes to copper-induced pyroptosis via regulating the IRE1α-XBP1 pathway in pig jejunal epithelial cells[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4): 1293-1303
|
Gao W, Huang Z, Duan J F, et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A[J]. Molecular Oncology, 2021, 15(12): 3527-3544
|
Li Y Q, Chen F F, Chen J, et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers, 2020, 12(1): 138
|
Liu J, Liu Y, Wang Y, et al. HMGB1 is a mediator of cuproptosis-related sterile inflammation[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 996307
|
Nishito Y, Kambe T. Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels[J]. The Journal of Biological Chemistry, 2019, 294(43): 15686-15697
|
Li Y, Kimura T, Huyck R W, et al. Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1[J]. Molecular and Cellular Biology, 2008, 28(13): 4275-4284
|
Hardyman J E, Tyson J, Jackson K A, et al. Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc[J]. Metallomics: Integrated Biometal Science, 2016, 8(3): 337-343
|
Heuchel R, Radtke F, Georgiev O, et al. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression[J]. The EMBO Journal, 1994, 13(12): 2870-2875
|
Amiard J C, Amiard-Triquet C, Barka S, et al. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers[J]. Aquatic Toxicology, 2006, 76(2): 160-202
|
Zhang B, Georgiev O, Hagmann M, et al. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein[J]. Molecular and Cellular Biology, 2003, 23(23): 8471-8485
|
Si M F, Lang J H. The roles of metallothioneins in carcinogenesis[J]. Journal of Hematology & Oncology, 2018, 11(1): 107
|
Chandhok G, Schmitt N, Sauer V, et al. The effect of zinc and D-penicillamine in a stable human hepatoma ATP7B knockout cell line[J]. PLoS One, 2014, 9(6): e98809
|
Keenan J, Meleady P, O’Doherty C, et al. Copper toxicity of inflection point in human intestinal cell line Caco-2 dissected: Influence of temporal expression patterns[J]. In Vitro Cellular & Developmental Biology Animal, 2021, 57(3): 359-371
|
Liu H R. Pan-cancer profiles of the cuproptosis gene set[J]. American Journal of Cancer Research, 2022, 12(8): 4074-4081
|
Andrews G K. Cellular zinc sensors: MTF-1 regulation of gene expression[J]. Biometals, 2001, 14(3/4): 223-237
|
Priante E, Pietropoli E, Piva E, et al. Cadmium-zinc interaction in Mus musculus fibroblasts[J]. International Journal of Molecular Sciences, 2022, 23(19): 12001
|
Santovito G, Boldrin F, Irato P. Metal and metallothionein distribution in different tissues of the Mediterranean clam Venerupis philippinarum during copper treatment and detoxification[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2015, 174/175: 46-53
|
Nolte C, Gore A, Sekler I, et al. ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc[J]. Glia, 2004, 48(2): 145-155
|
Kręz[DD(-1.8mm][HT6"]·[HT5"][]el A, Maret W. Thionein/metallothionein control Zn(Ⅱ) availability and the activity of enzymes[J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(3): 401-409
|
Meacham K A, Cortés M P, Wiggins E M, et al. Altered zinc balance in the Atp7b-/- mouse reveals a mechanism of copper toxicity in Wilson disease[J]. Metallomics: Integrated Biometal Science, 2018, 10(11): 1595-1606
|
Li Y Q. Copper homeostasis: Emerging target for cancer treatment[J]. IUBMB Life, 2020, 72(9): 1900-1908
|
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2/3): 65-87
|
Luedde T, Kaplowitz N, Schwabe R F. Cell death and cell death responses in liver disease: Mechanisms and clinical relevance[J]. Gastroenterology, 2014, 147(4): 765-783.e4
|