有机紫外吸收剂对珊瑚的毒理效应研究进展
Research Progress on Toxicological Effects of Organic Ultraviolet Absorbents on Coral
-
摘要: 作为海洋中最为重要的生态系统之一,珊瑚礁生态系统近年来因受全球变暖、海洋酸化等气候变化和过度捕捞、化学品污染等人类活动影响而面临着严峻的退化问题。其中,有机紫外吸收剂(organic ultraviolet absorbents, OUVs)是一类对珊瑚健康有重要影响的“准”持久性有机污染物,广泛存在于各地珊瑚礁区的环境介质中。为系统掌握OUVs对珊瑚的毒害机制及生态风险,本文从毒理实验的设计和毒理效应终点2个角度对相关文献进行了全面综述。结果表明,不管在个体、组织或分子层面,OUVs对珊瑚都具有一定的毒理效应,具体表现为珊瑚死亡、白化、触角收缩、幼虫变态发育受阻、组织病变、遗传物质或代谢物质受损等。最后,本文展望了OUVs对珊瑚毒理学的研究方向。Abstract: Coral reef ecosystem, which is one of the most important marine ecosystems, is suffered from serious degradation due to climate change (such as global warming and ocean acidification) and human activities (such as overfishing, chemical pollution). Organic ultraviolet absorbents (OUVs) are a kind of emerging “pseudo-persistent” organic pollutants. Previous studies indicated that OUVs have an importantly negative influence on coral health and are ubiquitous in various coral reef regions. To systematically understand the toxicity mechanism and ecological risk of OUVs to corals, this paper reviewed the toxicological effects of OUVs on corals from the perspectives of toxicological experiment design and toxicological effect endpoint. The results show that OUVs are toxic to corals at individual, tissular and molecular levels, with the toxicological endpoints of lethality, bleaching, tentacle retraction, larva metamorphosis retardation, tissue pathology, DNA damage, and metabolic abnormalities. Finally, the future research directions about OUVs’ toxicology on corals are proposed.
-
Key words:
- ultraviolet absorbents /
- coral /
- toxicological effect
-
-
朱小山, 黄静颖, 吕小慧, 等. 防晒剂的海洋环境行为与生物毒性[J]. 环境科学, 2018, 39(6): 2991-3002 Zhu X S, Huang J Y, Lv X H, et al. Fate and toxicity of UV filters in marine environments [J]. Environmental Science, 2018, 39(6): 2991-3002 (in Chinese)
Sánchez-Quiles D, Tovar-Sánchez A. Are sunscreens a new environmental risk associated with coastal tourism? [J]. Environment International, 2015, 83: 158-170 Lyu Y, Zhong F Y, Tang Z W, et al. Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: Implications for risk estimation [J]. Environmental Pollution, 2022, 294: 118612 Tsui M M P, Lam J C W, Ng T Y, et al. Occurrence, distribution, and fate of organic UV filters in coral communities [J]. Environmental Science & Technology, 2017, 51(8): 4182-4190 He T T, Tsui M M P, Tan C J, et al. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species [J]. The Science of the Total Environment, 2019, 651(Pt 2): 2391-2399 Kung T A, Lee S H, Yang T C, et al. Survey of selected personal care products in surface water of coral reefs in Kenting National Park, Taiwan [J]. The Science of the Total Environment, 2018, 635: 1302-1307 Tsui M M P, Chen L G, He T T, et al. Organic ultraviolet (UV) filters in the South China Sea coastal region: Environmental occurrence, toxicological effects and risk assessment [J]. Ecotoxicology and Environmental Safety, 2019, 181: 26-33 Tashiro Y, Kameda Y. Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan [J]. Marine Pollution Bulletin, 2013, 77(1-2): 333-340 Mitchelmore C L, He K, Gonsior M, et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii [J]. The Science of the Total Environment, 2019, 670: 398-410 Bargar T A, Alvarez D A, Garrison V H. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John, US Virgin Islands [J]. Marine Pollution Bulletin, 2015, 101(1): 193-199 Downs C A, Kramarsky-Winter E, Segal R, et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US virgin Islands [J]. Archives of Environmental Contamination and Toxicology, 2016, 70(2): 265-288 Schaap I, Slijkerman D M E. An environmental risk assessment of three organic UV-filters at Lac Bay, Bonaire, Southern Caribbean [J]. Marine Pollution Bulletin, 2018, 135: 490-495 Horricks R A, Tabin S K, Edwards J J, et al. Organic ultraviolet filters in nearshore waters and in the invasive lionfish (Pterois volitans) in Grenada, West Indies [J]. PLoS One, 2019, 14(7): e0220280 Tsui M M, Leung H W, Kwan B K, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan [J]. Journal of Hazardous Materials, 2015, 292: 180-187 Ellis J I, Jamil T, Anlauf H, et al. Multiple stressor effects on coral reef ecosystems [J]. Global Change Biology, 2019, 25(12): 4131-4146 Teh L S L, Teh L C L, Sumaila U R. A global estimate of the number of coral reef fishers [J]. PLoS One, 2013, 8(6): e65397 Zhong M Y, Tang J H, Guo X Y, et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai, Yellow and East China Seas [J]. Science of the Total Environment, 2020, 741: 140434 陆昊, 刘红岩, 黄秀铭, 等. 洗涤剂主成分LAS和AEO对软珊瑚氧化应激水平的影响[J]. 海洋环境科学, 2021, 40(1): 133-138 Lu H, Liu H Y, Huang X M, et al. Effect of main components of detergent on oxidative stress in soft corals [J]. Marine Environmental Science, 2021, 40(1): 133-138 (in Chinese)
Zhou Z, Wan L, Cai W Q, et al. Species-specific microplastic enrichment characteristics of scleractinian corals from reef environment: Insights from an in situ study at the Xisha Islands [J]. The Science of the Total Environment, 2022, 815: 152845 Putnam H M, Barott K L, Ainsworth T D, et al. The vulnerability and resilience of reef-building corals [J]. Current Biology, 2017, 27(11): R528-R540 江志坚, 黄小平. 富营养化对珊瑚礁生态系统影响的研究进展[J]. 海洋环境科学, 2010, 29(2): 280-285 Jiang Z J, Huang X P. Recent progress on effect of eutrophication on coral reef ecosystem [J]. Marine Environmental Science, 2010, 29(2): 280-285 (in Chinese)
Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections [J]. Environmental Health Perspectives, 2008, 116(4): 441-447 刘玮, 李航, 赵欣研, 等. 防晒剂对海洋生态环境的污染及潜在影响[J]. 中华皮肤科杂志, 2021, 54(5): 456-458 Liu W, Li H, Zhao X Y, et al. Sunscreen pollution of marine ecosystems and its potential impact [J]. Chinese Journal of Dermatology, 2021, 54(5): 456-458 (in Chinese)
刘小娟, 张弦, 周桓, 等. 2015—2019年防晒类化妆品中防晒剂的使用情况分析[J]. 广州化工, 2020, 48(24): 78-80 Liu X J, Zhang X, Zhou H, et al. Analysis of sunscreen use in sunscreen cosmetics from 2015 to 2019 [J]. Guangzhou Chemical Industry, 2020, 48(24): 78-80 (in Chinese)
卢婍, 周义军, 田英. 有机紫外线吸收剂二苯甲酮-3的环境污染及其内分泌干扰作用研究进展[J]. 上海交通大学学报: 医学版, 2019, 39(11): 1320-1324 Lu Q, Zhou Y J, Tian Y. Research progress in environmental pollution and endocrine disruption of the UV filter benzophenone-3 [J]. Journal of Shanghai Jiao Tong University: Medical Science, 2019, 39(11): 1320-1324 (in Chinese)
Ghazipura M, McGowan R, Arslan A, et al. Exposure to benzophenone-3 and reproductive toxicity: A systematic review of human and animal studies [J]. Reproductive Toxicology, 2017, 73: 175-183 Axelstad M, Boberg J, Hougaard K S, et al. Effects of pre-and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring [J]. Toxicology and Applied Pharmacology, 2011, 250(3): 278-290 He T T, Tsui M M P, Tan C J, et al. Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals [J]. Environmental Pollution, 2019, 245: 462-471 刘世光. 纳米二氧化钛在水中的聚集沉积特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 25-59 Liu S G. Study on aggregation and deposition characteristics of titanium dioxide nanoparticles in aqueous systems [D]. Harbin: Harbin Institute of Technology, 2013: 25 -59 (in Chinese)
Fel J P, Lacherez C, Bensetra A, et al. Photochemical response of the scleractinian coral Stylophora pistillata to some sunscreen ingredients [J]. Coral Reefs, 2019, 38(1): 109-122 Watkins Y S D, Sallach J B. Investigating the exposure and impact of chemical UV filters on coral reef ecosystems: Review and research gap prioritization [J]. Integrated Environmental Assessment and Management, 2021, 17(5): 967-981 Rotmann S, Thomas S. Coral tissue thickness as a bio-indicator of mine-related turbidity stress on coral reefs at Lihir Island, Papua New Guinea [J]. Oceanography, 2012, 25(4): 52-63 Wiedenmann J, D’Angelo C, Smith E G, et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching [J]. Nature Climate Change, 2013, 3(2): 160-164 Qin Z J, Yu K F, Liang Y T, et al. Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress [J]. The Science of the Total Environment, 2020, 711: 134610 Qin Z J, Yu K F, Liang J Y, et al. Significant changes in microbial communities associated with reef corals in the southern South China Sea during the 2015/2016 global-scale coral bleaching event [J]. Journal of Geophysical Research: Oceans, 2020, 125(7): e2019JC015579 Hume B C, Voolstra C R, Arif C, et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(16): 4416-4421 Liang J Y, Yu K F, Wang Y H, et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress [J]. Frontiers in Microbiology, 2017, 8: 979 Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: The winners and the losers [J]. Ecology Letters, 2001, 4(2): 122-131 Rotmann S. Tissue thickness as a tool to monitor the stress response of massive Porites corals to turbidity impact on Lihir Island, Papua New Guinea [D]. Townsville: James Cook University, 2004: 12-44 Weber M, de Beer D, Lott C, et al. Mechanisms of damage to corals exposed to sedimentation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): E1558-E1567 Qin Z J, Yu K F, Chen B, et al. Diversity of Symbiodiniaceae in 15 coral species from the southern South China Sea: Potential relationship with coral thermal adaptability [J]. Frontiers in Microbiology, 2019, 10: 2343 Ziegler M, Eguíluz V M, Duarte C M, et al. Rare symbionts may contribute to the resilience of coral-algal assemblages [J]. The ISME Journal, 2018, 12(1): 161-172 Downs C A, Kramarsky-Winter E, Fauth J E, et al. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata [J]. Ecotoxicology, 2014, 23(2): 175-191 Wijgerde T, van Ballegooijen M, Nijland R, et al. Adding insult to injury: Effects of chronic oxybenzone exposure and elevated temperature on two reef-building corals [J]. The Science of the Total Environment, 2020, 733: 139030 Conway A J, Gonsior M, Clark C, et al. Acute toxicity of the UV filter oxybenzone to the coral Galaxea fascicularis [J]. The Science of the Total Environment, 2021, 796: 148666 Santos A J M, Miranda M S, Esteves da Silva J C G. The degradation products of UV filters in aqueous and chlorinated aqueous solutions [J]. Water Research, 2012, 46(10): 3167-3176 林镇跃. 珊瑚共生的生物相互作用机制及其响应海洋变化的组学研究[D]. 厦门: 厦门大学, 2018: 40-56 Lin Z Y. Mechanisms of biotic interaction for coral symbiosis and the related omics responses to the ocean changes [D]. Xiamen: Xiamen University, 2018: 40 -56 (in Chinese)
Lesser M P. Oxidative stress causes coral bleaching during exposure to elevated temperatures [J]. Coral Reefs, 1997, 16(3): 187-192 McCoshum S M, Schlarb A M, Baum K A. Direct and indirect effects of sunscreen exposure for reef biota [J]. Hydrobiologia, 2016, 776(1): 139-146 杨蓉, 李娜, 饶凯锋, 等. 环境混合物的联合毒性研究方法[J]. 生态毒理学报, 2016, 11(1): 1-13 Yang R, Li N, Rao K F, et al. Review on methodology for environmental mixture toxicity study [J]. Asian Journal of Ecotoxicology, 2016, 11(1): 1-13 (in Chinese)
Stien D, Suzuki M, Rodrigues A M S, et al. A unique approach to monitor stress in coral exposed to emerging pollutants [J]. Scientific Reports, 2020, 10(1): 9601 Stien D, Clergeaud F, Rodrigues A M S, et al. Metabolomics reveal that octocrylene accumulates in Pocillopora damicornis tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction [J]. Analytical Chemistry, 2019, 91(1): 990-995 Nakajima D, Asada S, Kageyama S, et al. Activity related to the carcinogenicity of plastic additives in the benzophenone group [J]. Journal of UOEH, 2006, 28(2): 143-156 Knowland J, McKenzie E A, McHugh P J, et al. Sunlight-induced mutagenicity of a common sunscreen ingredient [J]. FEBS Letters, 1993, 324(3): 309-313 Tang C H, Lin C Y, Lee S H, et al. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane [J]. Aquatic Toxicology, 2017, 187: 72-81 李秀保, 黄晖, 练健生, 等. 珊瑚及共生藻在白化过程中的适应机制研究进展[J]. 生态学报, 2007, 27(3): 1217-1225 Li X B, Huang H, Lian J S, et al. Progress of adaptive mechanism of coral and symbiotic algae during bleaching [J]. Acta Ecologica Sinica, 2007, 27(3): 1217-1225 (in Chinese)
Malul D, Holzman R, Shavit U. Coral tentacle elasticity promotes an out-of-phase motion that improves mass transfer [J]. Proceedings Biological Sciences, 2020, 287(1929): 20200180 Higuchi T, Yuyama I, Nakamura T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities [J]. Regional Studies in Marine Science, 2015, 2: 27-31 项楠, 杨婷寒, 程华民, 等. 化学污染物对珊瑚礁生态系统的影响研究进展[J]. 生态毒理学报, 2017, 12(6): 19-26 Xiang N, Yang T H, Cheng H M, et al. Research progress on effects of chemical pollutants on the coral reef ecosystem [J]. Asian Journal of Ecotoxicology, 2017, 12(6): 19-26 (in Chinese)
Dove S, Ortiz J C, Enríquez S, et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress [J]. Limnology and Oceanography, 2006, 51(2): 1149-1158 van Oppen M J H, Blackall L L. Coral microbiome dynamics, functions and design in a changing world [J]. Nature Reviews Microbiology, 2019, 17(9): 557-567 陈玲林, 代彦, 赵华. 生物防晒剂活酵母细胞衍生物制备中酶解条件的优化[J]. 日用化学工业, 2014, 44(1): 31-34 Chen L L, Dai Y, Zhao H. Optimization of enzymolysis conditions in preparation of biological sunscreen live yeast cell derivative [J]. China Surfactant Detergent & Cosmetics, 2014, 44(1): 31-34 (in Chinese)
杨永鹏, 董萍, 左夏林, 等. 皮肤防晒化妆品的技术革命之五篇: 光控智能防晒化妆品研制的设想和设计[J]. 中国化妆品(行业), 2011(1): 72-77 Yang Y P, Dong P, Zuo X L, et al. Revolution of skin sunscreen cosmetics: Assumption and design of light-controlled intelligent sunscreen cosmetics [J]. China Cosmetics Review, 2011(1): 72-77 (in Chinese) -
![WeChat](http://eekw.rcees.ac.cn//eekw-data/stdlxb/2023/1/PIC/wechat_cn8a5af011-0734-43bd-a54b-dc082f103e03.jpg)
计量
- 文章访问数: 2781
- HTML全文浏览数: 2781
- PDF下载数: 112
- 施引文献: 0