有机紫外吸收剂对珊瑚的毒理效应研究进展

裴继影, 庞可, 王明威, 张瑞杰, 余克服. 有机紫外吸收剂对珊瑚的毒理效应研究进展[J]. 生态毒理学报, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001
引用本文: 裴继影, 庞可, 王明威, 张瑞杰, 余克服. 有机紫外吸收剂对珊瑚的毒理效应研究进展[J]. 生态毒理学报, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001
Pei Jiying, Pang Ke, Wang Mingwei, Zhang Ruijie, Yu Kefu. Research Progress on Toxicological Effects of Organic Ultraviolet Absorbents on Coral[J]. Asian journal of ecotoxicology, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001
Citation: Pei Jiying, Pang Ke, Wang Mingwei, Zhang Ruijie, Yu Kefu. Research Progress on Toxicological Effects of Organic Ultraviolet Absorbents on Coral[J]. Asian journal of ecotoxicology, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001

有机紫外吸收剂对珊瑚的毒理效应研究进展

    作者简介: 裴继影(1989—),女,博士,讲师,研究方向为海洋环境监测及珊瑚白化生化机理研究,E-mail:pjying@gxu.edu.cn
    通讯作者: 余克服, E-mail: kefuyu@scsio.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(22264003,42090041,42030502);广西自然科学基金资助项目(2018GXNSFAA281354,AD17129063,AA17204074)

  • 中图分类号: X822;X834

Research Progress on Toxicological Effects of Organic Ultraviolet Absorbents on Coral

    Corresponding author: Yu Kefu, kefuyu@scsio.ac.cn
  • Fund Project:
  • 摘要: 作为海洋中最为重要的生态系统之一,珊瑚礁生态系统近年来因受全球变暖、海洋酸化等气候变化和过度捕捞、化学品污染等人类活动影响而面临着严峻的退化问题。其中,有机紫外吸收剂(organic ultraviolet absorbents, OUVs)是一类对珊瑚健康有重要影响的“准”持久性有机污染物,广泛存在于各地珊瑚礁区的环境介质中。为系统掌握OUVs对珊瑚的毒害机制及生态风险,本文从毒理实验的设计和毒理效应终点2个角度对相关文献进行了全面综述。结果表明,不管在个体、组织或分子层面,OUVs对珊瑚都具有一定的毒理效应,具体表现为珊瑚死亡、白化、触角收缩、幼虫变态发育受阻、组织病变、遗传物质或代谢物质受损等。最后,本文展望了OUVs对珊瑚毒理学的研究方向。
  • 加载中
  • 朱小山, 黄静颖, 吕小慧, 等. 防晒剂的海洋环境行为与生物毒性[J]. 环境科学, 2018, 39(6): 2991-3002

    Zhu X S, Huang J Y, Lv X H, et al. Fate and toxicity of UV filters in marine environments [J]. Environmental Science, 2018, 39(6): 2991-3002 (in Chinese)

    Sánchez-Quiles D, Tovar-Sánchez A. Are sunscreens a new environmental risk associated with coastal tourism? [J]. Environment International, 2015, 83: 158-170
    Lyu Y, Zhong F Y, Tang Z W, et al. Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: Implications for risk estimation [J]. Environmental Pollution, 2022, 294: 118612
    Tsui M M P, Lam J C W, Ng T Y, et al. Occurrence, distribution, and fate of organic UV filters in coral communities [J]. Environmental Science & Technology, 2017, 51(8): 4182-4190
    He T T, Tsui M M P, Tan C J, et al. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species [J]. The Science of the Total Environment, 2019, 651(Pt 2): 2391-2399
    Kung T A, Lee S H, Yang T C, et al. Survey of selected personal care products in surface water of coral reefs in Kenting National Park, Taiwan [J]. The Science of the Total Environment, 2018, 635: 1302-1307
    Tsui M M P, Chen L G, He T T, et al. Organic ultraviolet (UV) filters in the South China Sea coastal region: Environmental occurrence, toxicological effects and risk assessment [J]. Ecotoxicology and Environmental Safety, 2019, 181: 26-33
    Tashiro Y, Kameda Y. Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan [J]. Marine Pollution Bulletin, 2013, 77(1-2): 333-340
    Mitchelmore C L, He K, Gonsior M, et al. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii [J]. The Science of the Total Environment, 2019, 670: 398-410
    Bargar T A, Alvarez D A, Garrison V H. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John, US Virgin Islands [J]. Marine Pollution Bulletin, 2015, 101(1): 193-199
    Downs C A, Kramarsky-Winter E, Segal R, et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US virgin Islands [J]. Archives of Environmental Contamination and Toxicology, 2016, 70(2): 265-288
    Schaap I, Slijkerman D M E. An environmental risk assessment of three organic UV-filters at Lac Bay, Bonaire, Southern Caribbean [J]. Marine Pollution Bulletin, 2018, 135: 490-495
    Horricks R A, Tabin S K, Edwards J J, et al. Organic ultraviolet filters in nearshore waters and in the invasive lionfish (Pterois volitans) in Grenada, West Indies [J]. PLoS One, 2019, 14(7): e0220280
    Tsui M M, Leung H W, Kwan B K, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan [J]. Journal of Hazardous Materials, 2015, 292: 180-187
    Ellis J I, Jamil T, Anlauf H, et al. Multiple stressor effects on coral reef ecosystems [J]. Global Change Biology, 2019, 25(12): 4131-4146
    Teh L S L, Teh L C L, Sumaila U R. A global estimate of the number of coral reef fishers [J]. PLoS One, 2013, 8(6): e65397
    Zhong M Y, Tang J H, Guo X Y, et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai, Yellow and East China Seas [J]. Science of the Total Environment, 2020, 741: 140434
    陆昊, 刘红岩, 黄秀铭, 等. 洗涤剂主成分LAS和AEO对软珊瑚氧化应激水平的影响[J]. 海洋环境科学, 2021, 40(1): 133-138

    Lu H, Liu H Y, Huang X M, et al. Effect of main components of detergent on oxidative stress in soft corals [J]. Marine Environmental Science, 2021, 40(1): 133-138 (in Chinese)

    Zhou Z, Wan L, Cai W Q, et al. Species-specific microplastic enrichment characteristics of scleractinian corals from reef environment: Insights from an in situ study at the Xisha Islands [J]. The Science of the Total Environment, 2022, 815: 152845
    Putnam H M, Barott K L, Ainsworth T D, et al. The vulnerability and resilience of reef-building corals [J]. Current Biology, 2017, 27(11): R528-R540
    江志坚, 黄小平. 富营养化对珊瑚礁生态系统影响的研究进展[J]. 海洋环境科学, 2010, 29(2): 280-285

    Jiang Z J, Huang X P. Recent progress on effect of eutrophication on coral reef ecosystem [J]. Marine Environmental Science, 2010, 29(2): 280-285 (in Chinese)

    Danovaro R, Bongiorni L, Corinaldesi C, et al. Sunscreens cause coral bleaching by promoting viral infections [J]. Environmental Health Perspectives, 2008, 116(4): 441-447
    刘玮, 李航, 赵欣研, 等. 防晒剂对海洋生态环境的污染及潜在影响[J]. 中华皮肤科杂志, 2021, 54(5): 456-458

    Liu W, Li H, Zhao X Y, et al. Sunscreen pollution of marine ecosystems and its potential impact [J]. Chinese Journal of Dermatology, 2021, 54(5): 456-458 (in Chinese)

    刘小娟, 张弦, 周桓, 等. 2015—2019年防晒类化妆品中防晒剂的使用情况分析[J]. 广州化工, 2020, 48(24): 78-80

    Liu X J, Zhang X, Zhou H, et al. Analysis of sunscreen use in sunscreen cosmetics from 2015 to 2019 [J]. Guangzhou Chemical Industry, 2020, 48(24): 78-80 (in Chinese)

    卢婍, 周义军, 田英. 有机紫外线吸收剂二苯甲酮-3的环境污染及其内分泌干扰作用研究进展[J]. 上海交通大学学报: 医学版, 2019, 39(11): 1320-1324

    Lu Q, Zhou Y J, Tian Y. Research progress in environmental pollution and endocrine disruption of the UV filter benzophenone-3 [J]. Journal of Shanghai Jiao Tong University: Medical Science, 2019, 39(11): 1320-1324 (in Chinese)

    Ghazipura M, McGowan R, Arslan A, et al. Exposure to benzophenone-3 and reproductive toxicity: A systematic review of human and animal studies [J]. Reproductive Toxicology, 2017, 73: 175-183
    Axelstad M, Boberg J, Hougaard K S, et al. Effects of pre-and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring [J]. Toxicology and Applied Pharmacology, 2011, 250(3): 278-290
    He T T, Tsui M M P, Tan C J, et al. Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals [J]. Environmental Pollution, 2019, 245: 462-471
    刘世光. 纳米二氧化钛在水中的聚集沉积特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 25-59 Liu S G. Study on aggregation and deposition characteristics of titanium dioxide nanoparticles in aqueous systems [D]. Harbin: Harbin Institute of Technology, 2013: 25

    -59 (in Chinese)

    Fel J P, Lacherez C, Bensetra A, et al. Photochemical response of the scleractinian coral Stylophora pistillata to some sunscreen ingredients [J]. Coral Reefs, 2019, 38(1): 109-122
    Watkins Y S D, Sallach J B. Investigating the exposure and impact of chemical UV filters on coral reef ecosystems: Review and research gap prioritization [J]. Integrated Environmental Assessment and Management, 2021, 17(5): 967-981
    Rotmann S, Thomas S. Coral tissue thickness as a bio-indicator of mine-related turbidity stress on coral reefs at Lihir Island, Papua New Guinea [J]. Oceanography, 2012, 25(4): 52-63
    Wiedenmann J, D’Angelo C, Smith E G, et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching [J]. Nature Climate Change, 2013, 3(2): 160-164
    Qin Z J, Yu K F, Liang Y T, et al. Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress [J]. The Science of the Total Environment, 2020, 711: 134610
    Qin Z J, Yu K F, Liang J Y, et al. Significant changes in microbial communities associated with reef corals in the southern South China Sea during the 2015/2016 global-scale coral bleaching event [J]. Journal of Geophysical Research: Oceans, 2020, 125(7): e2019JC015579
    Hume B C, Voolstra C R, Arif C, et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(16): 4416-4421
    Liang J Y, Yu K F, Wang Y H, et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress [J]. Frontiers in Microbiology, 2017, 8: 979
    Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: The winners and the losers [J]. Ecology Letters, 2001, 4(2): 122-131
    Rotmann S. Tissue thickness as a tool to monitor the stress response of massive Porites corals to turbidity impact on Lihir Island, Papua New Guinea [D]. Townsville: James Cook University, 2004: 12-44
    Weber M, de Beer D, Lott C, et al. Mechanisms of damage to corals exposed to sedimentation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): E1558-E1567
    Qin Z J, Yu K F, Chen B, et al. Diversity of Symbiodiniaceae in 15 coral species from the southern South China Sea: Potential relationship with coral thermal adaptability [J]. Frontiers in Microbiology, 2019, 10: 2343
    Ziegler M, Eguíluz V M, Duarte C M, et al. Rare symbionts may contribute to the resilience of coral-algal assemblages [J]. The ISME Journal, 2018, 12(1): 161-172
    Downs C A, Kramarsky-Winter E, Fauth J E, et al. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata [J]. Ecotoxicology, 2014, 23(2): 175-191
    Wijgerde T, van Ballegooijen M, Nijland R, et al. Adding insult to injury: Effects of chronic oxybenzone exposure and elevated temperature on two reef-building corals [J]. The Science of the Total Environment, 2020, 733: 139030
    Conway A J, Gonsior M, Clark C, et al. Acute toxicity of the UV filter oxybenzone to the coral Galaxea fascicularis [J]. The Science of the Total Environment, 2021, 796: 148666
    Santos A J M, Miranda M S, Esteves da Silva J C G. The degradation products of UV filters in aqueous and chlorinated aqueous solutions [J]. Water Research, 2012, 46(10): 3167-3176
    林镇跃. 珊瑚共生的生物相互作用机制及其响应海洋变化的组学研究[D]. 厦门: 厦门大学, 2018: 40-56 Lin Z Y. Mechanisms of biotic interaction for coral symbiosis and the related omics responses to the ocean changes [D]. Xiamen: Xiamen University, 2018: 40

    -56 (in Chinese)

    Lesser M P. Oxidative stress causes coral bleaching during exposure to elevated temperatures [J]. Coral Reefs, 1997, 16(3): 187-192
    McCoshum S M, Schlarb A M, Baum K A. Direct and indirect effects of sunscreen exposure for reef biota [J]. Hydrobiologia, 2016, 776(1): 139-146
    杨蓉, 李娜, 饶凯锋, 等. 环境混合物的联合毒性研究方法[J]. 生态毒理学报, 2016, 11(1): 1-13

    Yang R, Li N, Rao K F, et al. Review on methodology for environmental mixture toxicity study [J]. Asian Journal of Ecotoxicology, 2016, 11(1): 1-13 (in Chinese)

    Stien D, Suzuki M, Rodrigues A M S, et al. A unique approach to monitor stress in coral exposed to emerging pollutants [J]. Scientific Reports, 2020, 10(1): 9601
    Stien D, Clergeaud F, Rodrigues A M S, et al. Metabolomics reveal that octocrylene accumulates in Pocillopora damicornis tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction [J]. Analytical Chemistry, 2019, 91(1): 990-995
    Nakajima D, Asada S, Kageyama S, et al. Activity related to the carcinogenicity of plastic additives in the benzophenone group [J]. Journal of UOEH, 2006, 28(2): 143-156
    Knowland J, McKenzie E A, McHugh P J, et al. Sunlight-induced mutagenicity of a common sunscreen ingredient [J]. FEBS Letters, 1993, 324(3): 309-313
    Tang C H, Lin C Y, Lee S H, et al. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane [J]. Aquatic Toxicology, 2017, 187: 72-81
    李秀保, 黄晖, 练健生, 等. 珊瑚及共生藻在白化过程中的适应机制研究进展[J]. 生态学报, 2007, 27(3): 1217-1225

    Li X B, Huang H, Lian J S, et al. Progress of adaptive mechanism of coral and symbiotic algae during bleaching [J]. Acta Ecologica Sinica, 2007, 27(3): 1217-1225 (in Chinese)

    Malul D, Holzman R, Shavit U. Coral tentacle elasticity promotes an out-of-phase motion that improves mass transfer [J]. Proceedings Biological Sciences, 2020, 287(1929): 20200180
    Higuchi T, Yuyama I, Nakamura T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities [J]. Regional Studies in Marine Science, 2015, 2: 27-31
    项楠, 杨婷寒, 程华民, 等. 化学污染物对珊瑚礁生态系统的影响研究进展[J]. 生态毒理学报, 2017, 12(6): 19-26

    Xiang N, Yang T H, Cheng H M, et al. Research progress on effects of chemical pollutants on the coral reef ecosystem [J]. Asian Journal of Ecotoxicology, 2017, 12(6): 19-26 (in Chinese)

    Dove S, Ortiz J C, Enríquez S, et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress [J]. Limnology and Oceanography, 2006, 51(2): 1149-1158
    van Oppen M J H, Blackall L L. Coral microbiome dynamics, functions and design in a changing world [J]. Nature Reviews Microbiology, 2019, 17(9): 557-567
    陈玲林, 代彦, 赵华. 生物防晒剂活酵母细胞衍生物制备中酶解条件的优化[J]. 日用化学工业, 2014, 44(1): 31-34

    Chen L L, Dai Y, Zhao H. Optimization of enzymolysis conditions in preparation of biological sunscreen live yeast cell derivative [J]. China Surfactant Detergent & Cosmetics, 2014, 44(1): 31-34 (in Chinese)

    杨永鹏, 董萍, 左夏林, 等. 皮肤防晒化妆品的技术革命之五篇: 光控智能防晒化妆品研制的设想和设计[J]. 中国化妆品(行业), 2011(1): 72-77 Yang Y P, Dong P, Zuo X L, et al. Revolution of skin sunscreen cosmetics: Assumption and design of light-controlled intelligent sunscreen cosmetics [J]. China Cosmetics Review, 2011(1): 72-77 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2781
  • HTML全文浏览数:  2781
  • PDF下载数:  112
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-22
裴继影, 庞可, 王明威, 张瑞杰, 余克服. 有机紫外吸收剂对珊瑚的毒理效应研究进展[J]. 生态毒理学报, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001
引用本文: 裴继影, 庞可, 王明威, 张瑞杰, 余克服. 有机紫外吸收剂对珊瑚的毒理效应研究进展[J]. 生态毒理学报, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001
Pei Jiying, Pang Ke, Wang Mingwei, Zhang Ruijie, Yu Kefu. Research Progress on Toxicological Effects of Organic Ultraviolet Absorbents on Coral[J]. Asian journal of ecotoxicology, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001
Citation: Pei Jiying, Pang Ke, Wang Mingwei, Zhang Ruijie, Yu Kefu. Research Progress on Toxicological Effects of Organic Ultraviolet Absorbents on Coral[J]. Asian journal of ecotoxicology, 2023, 18(1): 51-67. doi: 10.7524/AJE.1673-5897.20220222001

有机紫外吸收剂对珊瑚的毒理效应研究进展

    通讯作者: 余克服, E-mail: kefuyu@scsio.ac.cn
    作者简介: 裴继影(1989—),女,博士,讲师,研究方向为海洋环境监测及珊瑚白化生化机理研究,E-mail:pjying@gxu.edu.cn
  • 1. 广西大学海洋学院, 南宁 530000;
  • 2. 广西南海珊瑚礁研究重点实验室, 南宁 530000
基金项目:

国家自然科学基金资助项目(22264003,42090041,42030502);广西自然科学基金资助项目(2018GXNSFAA281354,AD17129063,AA17204074)

摘要: 作为海洋中最为重要的生态系统之一,珊瑚礁生态系统近年来因受全球变暖、海洋酸化等气候变化和过度捕捞、化学品污染等人类活动影响而面临着严峻的退化问题。其中,有机紫外吸收剂(organic ultraviolet absorbents, OUVs)是一类对珊瑚健康有重要影响的“准”持久性有机污染物,广泛存在于各地珊瑚礁区的环境介质中。为系统掌握OUVs对珊瑚的毒害机制及生态风险,本文从毒理实验的设计和毒理效应终点2个角度对相关文献进行了全面综述。结果表明,不管在个体、组织或分子层面,OUVs对珊瑚都具有一定的毒理效应,具体表现为珊瑚死亡、白化、触角收缩、幼虫变态发育受阻、组织病变、遗传物质或代谢物质受损等。最后,本文展望了OUVs对珊瑚毒理学的研究方向。

English Abstract

参考文献 (63)

返回顶部

目录

/

返回文章
返回