17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响

刘少贞, 杨琼, 周俊亮, 曹信瑜, 陈越, 刘青, 王伟伟, 宋晶. 17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响[J]. 生态毒理学报, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002
引用本文: 刘少贞, 杨琼, 周俊亮, 曹信瑜, 陈越, 刘青, 王伟伟, 宋晶. 17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响[J]. 生态毒理学报, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002
Liu Shaozhen, Yang Qiong, Zhou Junliang, Cao Xinyu, Chen Yue, Liu Qing, Wang Weiwei, Song Jing. Effects of 17α-methyltestosterone on Lipid Metabolism in Liver of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002
Citation: Liu Shaozhen, Yang Qiong, Zhou Junliang, Cao Xinyu, Chen Yue, Liu Qing, Wang Weiwei, Song Jing. Effects of 17α-methyltestosterone on Lipid Metabolism in Liver of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002

17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响

    作者简介: 刘少贞(1983-),女,博士,副教授,研究方向为环境毒理学,E-mail:shmily8316@126.com
    通讯作者: 刘少贞, E-mail: shmily8316@126.com
  • 基金项目:

    国家自然科学基金资助项目(31600416);山西省自然科学基金资助项目(201601D202078);山西农业大学引进人才博士科研启动经费(2014YJ08);山西省畜牧“1331重点学科”(J201911306)

  • 中图分类号: X171.5

Effects of 17α-methyltestosterone on Lipid Metabolism in Liver of Gobiocypris rarus

    Corresponding author: Liu Shaozhen, shmily8316@126.com
  • Fund Project:
  • 摘要: 环境内分泌干扰物对环境影响十分严重,绝大部分进入水环境,危害水生生物健康,进而影响人类健康。17α-甲基睾酮(17α-methyltestosterone,MT)是一种常见的环境雄激素,但在鱼体内的作用机制尚不明确。为了探究MT对鱼类肝脏脂质代谢的影响,采用不同浓度的MT(0、25、50和100 ng·L-1)处理864尾稀有鮈鲫(Gobiocypris rarus),分别在7、14和21 d取肝脏样品。用石蜡组织切片(H-E染色)研究MT对稀有鮈鲫肝脏组织的影响;用RT-qPCR检测4个内参基因的稳定性及5个脂质代谢相关基因(acaca、acacb、fasn、gpat1和cpt1α)的mRNA表达;用ELISA法测定肝脏中甘油三酯的含量。结果表明,MT会对稀有鮈鲫肝脏造成一定程度的影响,50 ng·L-1 MT处理14 d,肝脏组织损伤最明显。25 ng·L-1和50 ng·L-1 MT处理14 d,相关基因的表达均显著变化(P<0.05)。mRNA表达与组织学结果均表明50 ng·L-1 MT对稀有鮈鲫肝脏影响最为显著。100 ng·L-1 MT处理21 d,acaca、cpt1α和gpat1基因表达量显著下降(P<0.05)。MT对雌鱼肝脏甘油三酯影响较雄鱼大。综上,MT通过影响肝脏脂质代谢相关基因mRNA的表达,干扰了稀有鮈鲫肝脏脂质代谢过程,进而对肝脏产生不同程度的损伤。由于MT在不同性别鱼体内的代谢途径不同,推测MT在稀有鮈鲫体内可能被芳香化为雌激素(ME),从而发挥部分雌激素作用。
  • 加载中
  • Cabana H, Jones J P, Agathos S N. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes:A review[J]. Engineering in Life Sciences, 2007, 7(5):429-456
    Sumpter J P. Xenoendocrine disrupters:Environmental impacts[J]. Toxicology Letters, 1998, 102-103:337-342
    Backe W J, Ort C, Brewer A J, et al. Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry[J]. Analytical Chemistry, 2011, 83(7):2622-2630
    Sun L, Liu Y, Chu X G, et al. Trace analysis of fifteen androgens in environmental waters by LC-ESI-MS-MS combined with solid-phase disk extraction cleanup[J]. Chromatographia, 2010, 71(9-10):867-873
    谭丽超. 水环境中类固醇激素的污染特征及健康风险评价研究[D]. 南京:南京农业大学, 2011:49-53 Tan L C. Environmental pollution investigations and environmental rist assessment studies of steroid hormones[D]. Nanjing:Nanjing Agricultural University, 2011:49

    -53(in Chinese)

    Rivero-Wendt C L G, Miranda-Vilela A L, Domingues I, et al. Steroid androgen 17 alpha methyltestosterone used in fish farming induces biochemical alterations in zebrafish adults[J]. Journal of Environmental Science and Health, Part A, 2020, 55(11):1321-1332
    Liu S, Xu P, Liu X, et al. Histological and sex-determining genes expression effects of 17α-methyltestosterone on mandarin fish Siniperca chuatsi gonad development[J]. Epigenetics & Genomics, 2020, 2020:3-5
    Zhang Y Z, Zhang Z M, Zhou L T, et al. Di (2-ethylhexyl) phthalate disorders lipid metabolism via TYK2/STAT1 and autophagy in rats[J]. Biomedical and Environmental Sciences, 2019, 32(6):406-418
    王琪. DEHP对青春期大鼠脂代谢的影响[D]. 长春:吉林大学, 2018:46-51 Wang Q. Effects of DEHP on the lipid metabolism in pubertal rats[D]. Changchun:Jilin University, 2018:46

    -51(in Chinese)

    Carnevali O, Notarstefano V, Olivotto I, et al. Dietary administration of EDC mixtures:A focus on fish lipid metabolism[J]. Aquatic Toxicology, 2017, 185:95-104
    王俊程, 孙浩桐, 张兰, 等. 邻苯二甲酸二乙基已酯对小鼠脂肪和葡萄糖代谢的影响[J]. 毒理学杂志, 2019, 33(1):17-21

    Wang J C, Sun H T, Zhang L, et al. Effects of diethylhexyl phthalate on lipid and glucose metabolism in mice[J]. Journal of Toxicology, 2019, 33(1):17-21(in Chinese)

    Lopes C, Madureira T V, Gonçalves J F, et al. Disruption of classical estrogenic targets in brown trout primary hepatocytes by the model androgens testosterone and dihydrotestosterone[J]. Aquatic Toxicology, 2020, 227:105586
    张鹏, 郑丽洋, 高会会, 等. 三氯生暴露加剧高脂饮食诱导的小鼠肠道和肝脏功能损伤[J]. 生态毒理学报, 2021, 16(4):131-140

    Zhang P, Zheng L Y, Gao H H, et al. Triclosan exposure exaggerates the injury of intestine and liver function induced by high fat diet in mice[J]. Asian Journal of Ecotoxicology, 2021, 16(4):131-140(in Chinese)

    Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity[J]. Nature, 2012, 488(7413):621-626
    吴艳. 常用抗生素诱导小鼠脂质代谢紊乱和肠道菌群变化的机理研究[D]. 杭州:浙江工业大学, 2015:55-57 Wu Y. Exposure of mice to antibiotics perturbs their hepatic energy metabolism and gut microbiome[D]. Hangzhou:Zhejiang University of Technology, 2015:55

    -57(in Chinese)

    Qi W, Zhou L T, Zhao T Y, et al. Effect of the TYK-2/STAT-3 pathway on lipid accumulation induced by mono-2-ethylhexyl phthalate[J]. Molecular and Cellular Endocrinology, 2019, 484:52-58
    Bano Y, Hasan M. Mercury induced time-dependent alterations in lipid profiles and lipid peroxidation in different body organs of cat-fish Heteropneustes fossilis[J]. Journal of Environmental Science and Health, Part B, 1989, 24(2):145-166
    Bais U E, Lokhande M V. Effect of cadmium chloride on histopathological changes in the freshwater fish Ophiocephalus striatus (Channa)[J]. International Journal of Zoological Research, 2011, 8(1):23-32
    Sastry K V, Gupta P K. The effect of cadmium on the digestive system of the teleost fish, Heteropneustes fossilis[J]. Environmental Research, 1979, 19(2):221-230
    Katti S R, Sathyanesan A G. Changes in tissue lipid and cholesterol content in the catfish Clarias batrachus (L.) exposed to cadmium chloride[J]. Bulletin of Environmental Contamination and Toxicology, 1984, 32(1):486-490
    Ngo M T, Doan T T P, Nguyen C T, et al. Chronic exposure of μg/L range bisphenol A to adult zebrafish (Danio rerio) leading to adipogenesis[J]. AIP Conference Proceedings, 2017, 1878(1):020028
    Cakmak G, Togan I, de Severcan F. 17β-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy:A comparative study with nonylphenol[J]. Aquatic Toxicology, 2006, 77(1):53-63
    Çakmak G, Togan I, Uguz C, et al. FT-IR spectroscopic analysis of rainbow trout liver exposed to nonylphenol[J]. Applied Spectroscopy, 2003, 57(7):835-841
    Fang L, Liang X F, Zhou Y, et al. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio[J]. The British Journal of Nutrition, 2014, 111(5):808-818
    Maisano M, Cappello T, Oliva S, et al. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea[J]. Marine Environmental Research, 2016, 121:40-48
    Lin R, Jia Y, Wu F J, et al. Combined exposure to fructose and bisphenol A exacerbates abnormal lipid metabolism in liver of developmental male rats[J]. International Journal of Environmental Research and Public Health, 2019, 16(21):4152
    Bouchard-Mercier A, Rudkowska I, Lemieux S, et al. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation[J]. Journal of Lipid Research, 2013, 54(10):2866-2873
    Wang X C, Zheng R, Yao Q, et al. Effects of fluoride on the histology, lipid metabolism, and bile acid secretion in liver of Bufo gargarizans larvae[J]. Environmental Pollution, 2019, 254:113052
    Liu Q P, Luo Q, Halim A, et al. Targeting lipid metabolism of cancer cells:A promising therapeutic strategy for cancer[J]. Cancer Letters, 2017, 401:39-45
    张雨, 施力光, 荀文娟, 等. 能量水平和激素对脂肪代谢酶基因的调控研究进展[J]. 动物营养学报, 2019, 31(8):3505-3510

    Zhang Y, Shi L G, Xun W J, et al. Research progress of regulation of fat metabolism enzyme gene by energy level and hormone[J]. Chinese Journal of Animal Nutrition, 2019, 31(8):3505-3510(in Chinese)

    Menendez J A, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nature Reviews Cancer, 2007, 7(10):763-777
    Wakil S J. Fatty acid synthase, a proficient multifunctional enzyme[J]. Biochemistry, 1989, 28(11):4523-4530
    Gui W, Liang Y, Tian W X, et al. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis[J] Biochimica et Biophysica Acta, 2016, 186(3):149-155
    Guan Y J, Gao J C, Zhang Y Y, et al. Effects of bisphenol A on lipid metabolism in rare minnow Gobiocypris rarus[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2016, 179:144-149
    McGarry J D, Brown N F. The mitochondrial carnitine palmitoyltransferase system:From concept to molecular analysis[J]. European Journal of Biochemistry, 1997, 244(1):1-14
    Lopes-Marques M, Delgado I L S, Ruivo R, et al. The origin and diversity of Cpt1 genes in vertebrate species[J]. PLoS One, 2015, 10(9):e0138447
    Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis[J]. American Journal of Physiology Endocrinology and Metabolism, 2009, 296(6):E1195-E1209
    Nogowski L, Kolodziejski P A. Effect of ostarine (enobosarm/GTX024), a selective androgen receptor modulator, on adipocyte metabolism in wistar rats[J]. Journal of Physiology and Pharmacology, 2019, 70(4):525-533
    O'Reilly M W, House P J, Tomlinson J W. Understanding androgen action in adipose tissue[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2014, 143:277-284
    Ohshima A, Cohen B I, Ayyad N, et al. Effect of a synthetic androgen on biliary lipid secretion in the female hamster[J]. Lipids, 1996, 31(8):879-886
    Leão L M C S M, Duarte M P C, Silva D M B, et al. Influence of methyltestosterone postmenopausal therapy on plasma lipids, inflammatory factors, glucose metabolism and visceral fat:A randomized study[J]. European Journal of Endocrinology, 2006, 154(1):131-139
    Astiningsih K, Rogers L J. Sensitivity to testosterone varies with strain, sex, and site of action in chickens[J]. Physiology & Behavior, 1996, 59(6):1085-1091
    Chen K L, Lee T Y, Huang C C, et al. Effect of caponization and exogenous androgens implantation on blood lipid and lipoprotein profile in male chickens[J]. Poultry Science, 2010, 89(5):924-930
    Örn S, Holbech H, Madsen T H, et al. Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylestradiol and methyltestosterone[J]. Aquatic Toxicology, 2003, 65(4):397-411
    Liu S Z, Qin F, Wang H P, et al. Effects of 17α-ethinylestradiol and bisphenol A on steroidogenic messenger ribonucleic acid levels in the rare minnow gonads[J]. Aquatic Toxicology, 2012, 122-123:19-27
    Qin F, Wang L H, Wang X Q, et al. Bisphenol A affects gene expression of gonadotropin-releasing hormones and type Ⅰ GnRH receptors in brains of adult rare minnow Gobiocypris rarus[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2013, 157(2):192-202
    Liu S Z, Wang L H, Qin F, et al. Gonadal development and transcript profiling of steroidogenic enzymes in response to 17α-methyltestosterone in the rare minnow Gobiocypris rarus[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2014, 143:223-232
    Qin F, Wang L H, Liu S Z, et al. Characterization of reference genes in rare minnow, Gobiocypris rarus (Actinopterygii:Cypriniformes:Cyprinidae) in early postembryonic development and in response to EDCs treatment[J]. Acta Ichthyologica et Piscatoria, 2013, 43(2):127-138
    Yang W J, Bing H E, Jie D Y, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and Technology, 2017, 5:278-281
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408
    薛圣伦, 黄艺, 孙嘉, 等. 双酚A诱导下双齿围沙蚕实时荧光定量PCR内参基因的筛选[J]. 生态毒理学报, 2019, 14(1):144-152

    Xue S L, Huang Y, Sun J, et al. Reference gene selection for quantitative real-time PCR in Perinereis aibuhitensis under BPA exposure[J]. Asian Journal of Ecotoxicology, 2019, 14(1):144-152(in Chinese)

    Nguyen P, Leray V, Diez M, et al. Liver lipid metabolism[J]. Journal of Animal Physiology and Animal Nutrition, 2008, 92(3):272-283
    Han X L. Lipidomics for studying metabolism[J]. Nature Reviews Endocrinology, 2016, 12(11):668-679
    熊倩, 胡立新, 蒋宇霞, 等. 脂质组学在环境领域中的应用[J]. 生态毒理学报, 2018, 13(6):1-12

    Xiong Q, Hu L X, Jiang Y X, et al. Application of lipidomics in environmental research[J]. Asian Journal of Ecotoxicology, 2018, 13(6):1-12(in Chinese)

    Richard N, Kaushik S, Larroquet L, et al. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss)[J]. British Journal of Nutrition, 2006, 96(2):299-309
    Jayakumar A, Tai M H, Huang W Y, et al. Human fatty acid synthase:Properties and molecular cloning[J]. PNAS, 1995, 92(19):8695-8699
    Chirala S S, Wakil S J. Structure and function of animal fatty acid synthase[J]. Lipids, 2004, 39(11):1045-1053
    Asturias F J, Chadick J Z, Cheung I K, et al. Structure and molecular organization of mammalian fatty acid synthase[J]. Nature Structural & Molecular Biology, 2005, 12(3):225-232
    刘阿朋, 查金苗, 王子健, 等. 17α-甲基睾酮对稀有鮈鲫幼鱼性腺发育与血清卵黄蛋白原水平的影响[J]. 生态毒理学报, 2006, 1(3):254-258

    Liu A P, Zha J M, Wang Z J, et al. Influences of 17α-methyltestosterone on gonad development and plasma vitellogenine induction of rare minnow larva[J]. Asian Journal of Ecotoxicology, 2006, 1(3):254-258(in Chinese)

    Hornung M W, Jensen K M, Korte J J, et al. Mechanistic basis for estrogenic effects in fathead minnow (Pimephales promelas) following exposure to the androgen 17α-methyltestosterone:Conversion of 17α-methyltestosterone to 17α-methylestradiol[J]. Aquatic Toxicology, 2004, 66(1):15-23
    Wang J, Zhou J L, Yang Q, et al. Effects of 17α-methyltestosterone on the transcriptome, gonadal histology and sex steroid hormones in Pseudorasbora parva[J]. Theriogenology, 2020, 155:88-97
    Gao J C, Liu S Z, Zhang Y Y, et al. Hepatic expression patterns of aryl hydrocarbon receptor, pregnane X receptor, two cytochrome P450s and five phase Ⅱ metabolism genes responsive to 17alpha-methyltestosterone in rare minnow Gobiocypris rarus[J]. Environmental Toxicology and Pharmacology, 2014, 37(3):1157-1168
    姜巍巍, 言野, 李娜, 等. 水源水雄激素受体干扰效应及在水处理工艺中的变化[J]. 生态毒理学报, 2016, 11(2):405-412

    Jiang W W, Yan Y, Li N, et al. Androgen receptor activities of source waters and their changes during drinking water treatment processes[J]. Asian Journal of Ecotoxicology, 2016, 11(2):405-412(in Chinese)

    Begriche K, Massart J, Robin M A, et al. Drug-induced toxicity on mitochondria and lipid metabolism:Mechanistic diversity and deleterious consequences for the liver[J]. Journal of Hepatology, 2011, 54(4):773-794
    王文龙, 崔欣, 安立龙, 等. 日粮中铜胁迫对吉富罗非鱼幼鱼抗氧化、脂质过氧化及肝脏组织结构的影响[J]. 生态毒理学报, 2015, 10(2):266-275

    Wang W L, Cui X, An L L, et al. Effects of dietary copper stress on antioxidation, lipid peroxidation and tissue structure of liver in juvenile GIFT tilapia (Oreochromis niloticus)[J]. Asian Journal of Ecotoxicology, 2015, 10(2):266-275(in Chinese)

    Xin J J, Yan S H, Hong X S, et al. Environmentally relevant concentrations of carbamazepine induced lipid metabolism disorder of Chinese rare minnow (Gobiocypris rarus) in a gender-specific pattern[J]. Chemosphere, 2021, 265:129080
    Ho J C H, Hsiao C D, Kawakami K, et al. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos[J]. Aquatic Toxicology, 2016, 173:29-35
    Baybutt R C, Rosales C, Brady H, et al. Dietary fish oil protects against lung and liver inflammation and fibrosis in monocrotaline treated rats[J]. Toxicology, 2002, 175(1-3):1-13
    Ponziani F R, Pecere S, Gasbarrini A, et al. Physiology and pathophysiology of liver lipid metabolism[J]. Expert Review of Gastroenterology & Hepatology, 2015, 9(8):1055-1067
    Yan S H, Wang M, Liang X F, et al. Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Pollution, 2018, 243:480-491
    Bhattacharjee K, Nath M, Choudhury Y. Fatty acid synthesis and cancer:Aberrant expression of the ACACA and ACACB genes increases the risk for cancer[J]. Meta Gene, 2020, 26:100798
    McClintick J N, Crabb D W, Tian H J, et al. Global effects of vitamin A deficiency on gene expression in rat liver:Evidence for hypoandrogenism[J]. The Journal of Nutritional Biochemistry, 2006, 17(5):345-355
    Yang Q H, Ding M Y, Tan B P, et al. Effects of dietary vitamin A on growth, feed utilization, lipid metabolism enzyme activities, and fatty acid synthase and hepatic lipase mRNA expression levels in the liver of juvenile orange spotted grouper, Epinephelus coioides[J]. Aquaculture, 2017, 479:501-507
    Ide T, Kobayashi H, Ashakumary L, et al. Comparative effects of Perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver[J]. Biochimica et Biophysica Acta (BBA):Molecular and Cell Biology of Lipids, 2000, 1485(1):23-35
    Tan J R, Xu J H, Wei G H, et al. HNF1α controls liver lipid metabolism and insulin resistance via negatively regulating the SOCS-3-STAT3 signaling pathway[J]. Journal of Diabetes Research, 2019, 2019:1-15
    Li K, Zhao B, Wei D D, et al. miR-146a improves hepatic lipid and glucose metabolism by targeting MED1[J]. International Journal of Molecular Medicine, 2020, 45(2):543-555
    Qian L, Zhang J, Chen X G, et al. Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism[J]. Environmental Pollution, 2019, 247:775-782
    刘慧, 朱方伟, 尹颖, 等. 纳米ZnO对鲫鱼肝脏的毒性[J]. 生态毒理学报, 2010, 5(5):698-703

    Liu H, Zhu F W, Yin Y, et al. Toxicity of nano-ZnO on liver of goldfish (Carassius auratus)[J]. Asian Journal of Ecotoxicology, 2010, 5(5):698-703(in Chinese)

    Chow J D Y, Lawrence R T, Healy M E, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation[J]. Molecular Metabolism, 2014, 3(4):419-431
    Barber M C, Price N T, Travers M T. Structure and regulation of acetyl-CoA carboxylase genes of metazoa[J]. Biochimica et Biophysica Acta, 2005, 1733(1):1-28
    Stefanovic-Racic M, Perdomo G, Mantell B S, et al. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels[J]. American Journal of Physiology Endocrinology and Metabolism, 2008, 294(5):E969-E977
    Chen Q L, Luo Z, Pan Y X, et al. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper[J]. Aquatic Toxicology, 2013, 136-137:72-78
    Wendel A A, Cooper D E, Ilkayeva O R, et al. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation[J]. Journal of Biological Chemistry, 2013, 288(38):27299-27306
  • 加载中
计量
  • 文章访问数:  4337
  • HTML全文浏览数:  4337
  • PDF下载数:  146
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-02
刘少贞, 杨琼, 周俊亮, 曹信瑜, 陈越, 刘青, 王伟伟, 宋晶. 17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响[J]. 生态毒理学报, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002
引用本文: 刘少贞, 杨琼, 周俊亮, 曹信瑜, 陈越, 刘青, 王伟伟, 宋晶. 17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响[J]. 生态毒理学报, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002
Liu Shaozhen, Yang Qiong, Zhou Junliang, Cao Xinyu, Chen Yue, Liu Qing, Wang Weiwei, Song Jing. Effects of 17α-methyltestosterone on Lipid Metabolism in Liver of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002
Citation: Liu Shaozhen, Yang Qiong, Zhou Junliang, Cao Xinyu, Chen Yue, Liu Qing, Wang Weiwei, Song Jing. Effects of 17α-methyltestosterone on Lipid Metabolism in Liver of Gobiocypris rarus[J]. Asian journal of ecotoxicology, 2021, 16(5): 87-101. doi: 10.7524/AJE.1673-5897.20210602002

17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响

    通讯作者: 刘少贞, E-mail: shmily8316@126.com
    作者简介: 刘少贞(1983-),女,博士,副教授,研究方向为环境毒理学,E-mail:shmily8316@126.com
  • 山西农业大学动物科学学院, 太谷 030801
基金项目:

国家自然科学基金资助项目(31600416);山西省自然科学基金资助项目(201601D202078);山西农业大学引进人才博士科研启动经费(2014YJ08);山西省畜牧“1331重点学科”(J201911306)

摘要: 环境内分泌干扰物对环境影响十分严重,绝大部分进入水环境,危害水生生物健康,进而影响人类健康。17α-甲基睾酮(17α-methyltestosterone,MT)是一种常见的环境雄激素,但在鱼体内的作用机制尚不明确。为了探究MT对鱼类肝脏脂质代谢的影响,采用不同浓度的MT(0、25、50和100 ng·L-1)处理864尾稀有鮈鲫(Gobiocypris rarus),分别在7、14和21 d取肝脏样品。用石蜡组织切片(H-E染色)研究MT对稀有鮈鲫肝脏组织的影响;用RT-qPCR检测4个内参基因的稳定性及5个脂质代谢相关基因(acaca、acacb、fasn、gpat1和cpt1α)的mRNA表达;用ELISA法测定肝脏中甘油三酯的含量。结果表明,MT会对稀有鮈鲫肝脏造成一定程度的影响,50 ng·L-1 MT处理14 d,肝脏组织损伤最明显。25 ng·L-1和50 ng·L-1 MT处理14 d,相关基因的表达均显著变化(P<0.05)。mRNA表达与组织学结果均表明50 ng·L-1 MT对稀有鮈鲫肝脏影响最为显著。100 ng·L-1 MT处理21 d,acaca、cpt1α和gpat1基因表达量显著下降(P<0.05)。MT对雌鱼肝脏甘油三酯影响较雄鱼大。综上,MT通过影响肝脏脂质代谢相关基因mRNA的表达,干扰了稀有鮈鲫肝脏脂质代谢过程,进而对肝脏产生不同程度的损伤。由于MT在不同性别鱼体内的代谢途径不同,推测MT在稀有鮈鲫体内可能被芳香化为雌激素(ME),从而发挥部分雌激素作用。

English Abstract

参考文献 (83)

返回顶部

目录

/

返回文章
返回