4,4'-DDT全生命周期暴露对大型溞(Daphnia magna)生长、生殖、心率、行为、存活及基因转录的影响
Whole-Life-Stage Exposure of 4,4'-DDT and Effects on Development, Reproduction, Heart Rate, Behavior, Survival and Gene Transcription of Daphnia magna
-
摘要: 大型溞(Daphnia magna)慢性毒性测试的毒理学数据是美国环境保护局水质基准(water quality criteria,WQC)制定中非常重要的数据来源,用以推导能有效保护水生生物的化学污染物浓度阈值。以往的研究表明,在部分生命周期暴露的基础上得出的最低观察效应浓度(lowest observed effective concentration,LOEC)有时会高于在大型溞全生命周期暴露时的LOEC。因此,对于一些具有生物富集性和环境持久性的化学污染物而言,由部分生命周期测试的毒理学数据推导出的水质基准在全生命周期暴露后是否仍然会对水生生物产生毒性效应尚未明确。为此,本研究选取美国环境保护局WQC文件中的污染物4,4'-滴滴涕(4,4'-DDT)为受试化学污染物,其基准连续浓度(criteria continuous concentration,CCC)为测试浓度,开展模式生物大型溞全生命周期暴露实验,检测4,4'-DDT在大型溞不同生命阶段对其生长、生殖、心率、行为、存活及基因转录的影响。研究发现,美国环境保护局WQC文件制定的4,4'-DDT的CCC对大型溞全生命周期的生长、生殖、存活都没有产生显著性的影响,但是在不同生命阶段对于其心率和行为有显著性的毒性效应。基因转录结果表明,4,4'-DDT在生长阶段和死亡阶段分别显著性改变了大型溞与免疫功能和细胞信号传导功能相关代谢通路中基因的转录。此外,随着暴露时间的延长,其心率参数的LOEC从第21天的1 ng·L-1降低至第32天的0.1 ng·L-1,说明即使在0.1 ng·L-1暴露条件下仍然能够观察到4,4'-DDT对大型溞的毒性效应。因此在对一些持久性环境污染物作环境风险评估与环境基准制定时,全生命周期毒性测试也应得到适当的考虑。Abstract: Toxicological data deduced from chronic toxicity test of Daphnia magna is imperative in the establishment of the water quality criteria (WQC) of United States Environmental Protection Agency (US EPA), and in the calculation of concentration thresholds of contaminates to effectively protect aquatic organisms. However, previous studies revealed that compared with the partial-life-stage exposure, the whole-life-stage exposure of Daphnia magna decreased the lowest observed effective concentration (LOEC) of pollutants. Therefore, for those contaminates with bioaccumulation and environmental persistence, whether the pollutant with the criteria concentration deduced from partial-life-stage exposure test is toxic to aquatic organisms after the whole-life-stage exposure remains unknown. In order to investigate the question, this study selected 4,4'-DDT from the US EPA WQC document as a test pollutant and set its criterion continuous concentration (CCC) as test concentration to conduct the whole-life-stage exposure experiment to Daphnia magna, and to study its effects on growth, reproduction, heart rate, behavior, survival, and gene transcription of Daphnia magna at different life stages. The results demonstrated that 4,4'-DDT with the CCC set in the US EPA WQC had no significant impacts on growth, reproduction, survival after the whole-life-stage exposure, but the exposure caused significant effects on heart rate and behavior on different life stages. Gene transcription results indicated that 4,4'-DDT significantly altered the transcription of genes related to immune function and cell signaling function of Daphnia magna at the growth stage and the death stage, respectively. In addition, as exposure time prolonged, the LOEC of heart rate decreased from 1 ng·L-1 on day 21st to 0.1 ng·L-1 on day 32nd, which showed that 0.1 ng·L-1 of 4,4'-DDT has certain toxic effects to Daphnia magna. Therefore, in the environmental risk assessment and benchmarking derivation of some environmentally-persistent pollutants, the importance of the whole-life-stage exposure should be considered.
-
Key words:
- 4,4'-DDT /
- Daphnia magna /
- lowest observed effective concentration /
- whole-life-stage exposure /
- US EPA
-
孟伟, 张远, 郑丙辉. 水环境质量基准、标准与流域水污染物总量控制策略[J]. 环境科学研究, 2006, 19(3):1-6 Meng W, Zhang Y, Zheng B H. The quality criteria, standards of water environment and the water pollutant control strategy on watershed[J]. Research of Environmental Sciences, 2006, 19(3):1-6(in Chinese)
Marsh M C. The effect of some industrial wastes on fishes[R]. Washington DC:US Government Printing Office, 1907 Shelford V. An experimental study of the effects of gas waste upon fishes, with especial reference to stream pollution[J]. Illinois Natural History Survey Bulletin, 1917, 11(1-10):381-412 Ellis M M. Detection and measurement of stream pollution[J]. Bulletin of the Bureau of Fisheries, 1937, 48(22):365-437 席北斗, 霍守亮, 陈奇, 等. 美国水质标准体系及其对我国水环境保护的启示[J]. 环境科学与技术, 2011, 34(5):100-103 , 120 Xi B D, Huo S L, Chen Q, et al. U.S water quality standard system and its revelation for China[J]. Environmental Science & Technology, 2011, 34(5):100-103, 120(in Chinese)
Adema D M M. Daphnia magna as a test animal in acute and chronic toxicity tests[J]. Hydrobiologia, 1978, 59(2):125-134 Crosby D G, Tucker R K, Aharonson N. The detection of acute toxicity with Daphnia magna[J]. Food and Cosmetics Toxicology, 1966, 4:503-514 Billoir E, Péry A R R, Charles S. Integrating the lethal and sublethal effects of toxic compounds into the population dynamics of Daphnia magna:A combination of the DEBtox and matrix population models[J]. Ecological Modelling, 2007, 203(3-4):204-214 Anderson B G, Jenkins J C. A time study of events in the life span of Daphnia magna[J]. The Biological Bulletin, 1942, 83(2):260-272 Stanley J K, Ramirez A J, Mottaleb M, et al. Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas[J]. Environmental Toxicology and Chemistry, 2006, 25(7):1780-1786 Postmes T J, Prick R, Brorens I. The deceleration of the heart frequency in the waterflea Daphnia magna by adrenoceptor agonists and antagonists[J]. Hydrobiologia, 1989, 171(2):141-148 Li H, Yuan S L, Su G Y, et al. Whole-life-stage characterization in the basic biology of Daphnia magna and effects of TDCIPP on growth, reproduction, survival, and transcription of genes[J]. Environmental Science & Technology, 2017, 51(23):13967-13975 Munier M, Grouleff J, Gourdin L, et al. In vitro effects of the endocrine disruptor p,p'-DDT on human follitropin receptor[J]. Environmental Health Perspectives, 2016, 124(7):991-999 Smith A G. Chlorinated hydrocarbon insecticides[J]. Handbook of Pesticide Toxicology, 1991, 2:731-915 Sudharshan S, Naidu R, Mallavarapu M, et al. DDT remediation in contaminated soils:A review of recent studies[J].Biodegradation, 2012, 23(6):851-863 Shams S, Cerasino L, Salmaso N, et al. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens:Implications for water management[J]. Aquatic Toxicology, 2014, 148:9-15 Chae Y, Kim D, Kim S W, et al. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain[J]. Scientific Reports, 2018, 8:284 Schwarzenberger A, Courts C, von Elert E. Target gene approaches:Gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa[J]. BMC Genomics, 2009, 10:527 Hebert P D N, Ward R D. Inheritance during parthenogenesis in Daphnia magna[J]. Genetics, 1972, 71(4):639-642 Agrawal A F. Sexual selection and the maintenance of sexual reproduction[J]. Nature, 2001, 411(6838):692-695 Lampert W. Daphnia:Development of a model organism in ecology and evolution[J]. Excellence in Ecology, 2011, 21:1-275 Nevalainen L, Sarmaja-Korjonen K, Luoto T P, et al. Does oxygen availability regulate sexual reproduction in local populations of the littoral cladoceran Alonella nana?[J]. Hydrobiologia, 2011, 661(1):463-468 Untersteiner H, Gretschel G, Puchner T, et al. Monitoring behavioral responses to the heavy metal cadmium in the marine shrimp Hippolyte inermis leach (Crustacea:Decapoda) with video imaging[J]. Zoological Studies, 2005, 44(1):71-80 Baillieul M, Blust R. Analysis of the swimming velocity of cadmium-stressed Daphnia magna[J]. Aquatic Toxicology, 1999, 44(4):245-254 Duquesne S, Küster E. Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate[J]. Ecotoxicology and Environmental Safety, 2010, 73(3):353-359 Mathavan S, Lee S G P, Mak A, et al. Transcriptome analysis of zebrafish embryogenesis using microarrays[J]. PLoS Genetics, 2005, 1(2):260-276 Viñas J, Piferrer F. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads[J]. Biology of Reproduction, 2008, 79(4):738-747 Li H, Su G Y, Zou M, et al. Effects of tris(1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of Daphnia magna at environmentally relevant concentrations[J]. Environmental Science & Technology, 2015, 49(21):12975-12983 Njiwa J R K, Müller P, Klein R. Life cycle stages and length of zebrafish (Danio rerio) exposed to DDT[J]. Journal of Health Science, 2004, 50(3):220-225 Kashian D R, Dodson S I. Effects of common-use pesticides on developmental and reproductive processes in Daphnia[J]. Toxicology and Industrial Health, 2002, 18(5):225-235 Cao X T. New DNA-sensing pathway feeds RIG-I with RNA[J]. Nature Immunology, 2009, 10(10):1049-1051 Lau L, Gray E E, Brunette R L, et al. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway[J]. Science, 2015, 350(6260):568-571 Lari E, Steinkey D, Pyle G G. A novel apparatus for evaluating contaminant effects on feeding activity and heart rate in Daphnia spp.[J]. Ecotoxicology and Environmental Safety, 2017, 135:381-386 Bownik A, Pawłocik M, Sokołowska N. Effects of neonicotinoid insecticide acetamiprid on swimming velocity, heart rate and thoracic limb movement of Daphnia magna[J]. Polish Journal of Natural Science, 2017, 32(3):481-493 Robledo-Sánchez K C M, Guevara-Pantoja F J, Ruiz-Suárez J C. Video-tracking and high-speed bright field microscopy allow the determination of swimming and cardiac effects of D. magna exposed to local anaesthetics[J]. Science of the Total Environment, 2019, 691:278-283 蔡清洁, 何文辉, 彭自然, 等. pH和盐度对大型溞心率和摄食行为的影响[J]. 上海海洋大学学报, 2017, 26(3):415-421 Cai Q J, He W H, Peng Z R, et al. Effects of pH and salinity on heart rate and feeding behavior of Daphnia magna[J]. Journal of Shanghai Ocean University, 2017, 26(3):415-421(in Chinese)
Liu Y H, Yan Z Y, Zhang L, et al. Food up-take and reproduction performance of Daphnia magna under the exposure of bisphenols[J]. Ecotoxicology and Environmental Safety, 2019, 170:47-54 王茜, 郭鹄飞, 王兰. 镉对大型溞摄食能力和相关生理指标的影响[J]. 水生生物学报, 2018, 42(3):616-621 Wang Q, Guo H F, Wang L. Effect of cadmium on the feeding capacity and physiological status of Daphnia magna[J]. Acta Hydrobiologica Sinica, 2018, 42(3):616-621(in Chinese)
Campbell A K, Wann K T, Matthews S B. Lactose causes heart arrhythmia in the water flea Daphnia pulex[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2004, 139(2):225-234 Pirtle T J, Carr T L, Khurana T, et al. ZD7288 and mibefradil inhibit the myogenic heartbeat in Daphnia magna indicating its dependency on HCN and T-type calcium ion channels[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2018, 222:36-42 Villegas-Navarro A, Rosas-L E, Reyes J L. The heart of Daphnia magna:Effects of four cardioactive drugs[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2003, 136(2):127-134 Podosinovikova N P, Ezhov N F, Saǐkina N A, et al. Heart rate in Daphnia magna as a functional test for assessing efficacy of chemical agents[J]. Eksperimental'naia i Klinicheskaia Farmakologiia, 2008, 71(3):54-56 Clemedson C, Ekwall B. Overview of the final MEIC results:Ⅰ. the in vitro-in vitro evaluation[J]. Toxicology in Vitro, 1999, 13(4-5):657-663 Liang R Y, He J, Shi Y J, et al. Effects of perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna[J]. Chemosphere, 2017, 168:1613-1618 Crosby D G, Tucker R K. Accumulation of DDT by Daphnia magna[J]. Environmental Science & Technology, 1971, 5(8):714-716 Dodson S I, Hanazato T, Gorski P R. Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone[J]. Environmental Toxicology and Chemistry, 1995, 14(1):43 禹果, 孔德刚, 李柏林, 等. 蚤状溞在4种毒物胁迫下的运动行为变化研究[J]. 环境科学与技术, 2019, 42(1):112-118 Yu G, Kong D G, Li B L, et al. Study on swimming behavior change of Daphnia pulex under stress of four toxic substances[J]. Environmental Science & Technology, 2019, 42(1):112-118(in Chinese)
Maki A W, Johnson H E. Effects of PCB (aroclor 1254) and p, p'DDT on production and survival of Daphnia magna Strauss[J]. Bulletin of Environmental Contamination and Toxicology, 1975, 13(4):412-416 Lauss M, Kriegner A, Vierlinger K, et al. Characterization of the drugged human genome[J]. Pharmacogenomics, 2007, 8(8):1063-1073
计量
- 文章访问数: 3515
- HTML全文浏览数: 3515
- PDF下载数: 111
- 施引文献: 0