2种微米级聚苯乙烯颗粒对菘蓝幼苗生长及土壤群落结构的影响

杨雅杰, 褚玲珑, 宋新山, 赵晓祥. 2种微米级聚苯乙烯颗粒对菘蓝幼苗生长及土壤群落结构的影响[J]. 生态毒理学报, 2022, 17(6): 244-255. doi: 10.7524/AJE.1673-5897.20211116001
引用本文: 杨雅杰, 褚玲珑, 宋新山, 赵晓祥. 2种微米级聚苯乙烯颗粒对菘蓝幼苗生长及土壤群落结构的影响[J]. 生态毒理学报, 2022, 17(6): 244-255. doi: 10.7524/AJE.1673-5897.20211116001
Yang Yajie, Chu Linglong, Song Xinshan, Zhao Xiaoxiang. Effects of Two Micron-sized Polystyrene Particles on Isatis indigotica Seedlings Growth and Soil Community Structure[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 244-255. doi: 10.7524/AJE.1673-5897.20211116001
Citation: Yang Yajie, Chu Linglong, Song Xinshan, Zhao Xiaoxiang. Effects of Two Micron-sized Polystyrene Particles on Isatis indigotica Seedlings Growth and Soil Community Structure[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 244-255. doi: 10.7524/AJE.1673-5897.20211116001

2种微米级聚苯乙烯颗粒对菘蓝幼苗生长及土壤群落结构的影响

    作者简介: 杨雅杰(1997-),女,硕士研究生,研究方向为微塑料对土培植物的影响,E-mail:ysust2015@163.com
    通讯作者: 赵晓祥, E-mail: zxx@dhu.edu.cn
  • 基金项目:

    国家重点研发计划项目(2019YFC0408604)

  • 中图分类号: X171.5

Effects of Two Micron-sized Polystyrene Particles on Isatis indigotica Seedlings Growth and Soil Community Structure

    Corresponding author: Zhao Xiaoxiang, zxx@dhu.edu.cn
  • Fund Project:
  • 摘要: 微塑料由于其粒径小、比表面积高、难降解等特性对土壤环境、农作物的生长都带来了危害。以菘蓝为供试植物,探究了(775.90±61.66) nm和(50.07±1.29) μm (分别命名为S组和B组)的聚苯乙烯微塑料(PS-NPs)对菘蓝种子和幼苗生长及根际土壤微生物组成的影响。结果显示,2种粒径的PS-NPs对菘蓝种子发芽率和幼苗生物量均有促进作用,S组对菘蓝叶片细胞膜的伤害率大于B组。PS-NPs的添加使菘蓝叶片中丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和过氧化物酶(POD)活性升高,且微塑料浓度越高,影响越大。较高浓度(1 000 mg·kg-1)的微塑料胁迫下,B组菘蓝叶片中3种酶活性均分别比S组高出46.99%(SOD)、61.56%(CAT)、14.91%(POD)。此外高通量测序结果表明PS-NPs的添加增加了菘蓝根际土壤微生物群落多样性,群落多样性大小为:S组>B组>CK,处理组与对照组相比优势菌门相同但丰度有所变化,PS-NPs的添加使放线菌门(Actinobacteria)和变形菌门(Proteobacteria)丰度升高,而绿弯菌门(Chloroflexi)丰度降低。
  • 加载中
  • Zhou Q, Zhang H B, Fu C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea[J]. Geoderma, 2018, 322:201-208
    Boyle K,Örmeci B. Microplastics and nanoplastics in the freshwater and terrestrial environment:A review[J]. Water, 2020, 12(9):26-33
    骆永明, 施华宏, 涂晨, 等. 环境中微塑料研究进展与展望[J]. 科学通报, 2021, 66(13):1547-1562

    Luo Y M, Shi H H, Tu C, et al. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 2021, 66(13):1547-1562(in Chinese)

    Rillig M C, Ingraffia R, de Souza Machado A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8:1805
    Zhang J J, Chen Y H, Wang X X, et al. A review of microplastics in the soil environment[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6):937-952
    Yang L, Zhang Y L, Kang S C, et al. Microplastics in soil:A review on methods, occurrence, sources, and potential risk[J]. The Science of the Total Environment, 2021, 780:146-154
    杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染:来源、过程及风险[J]. 土壤学报, 2021, 58(2):281-298

    Yang J, Li L Z, Zhou Q, et al. Microplastics contamination of soil environment:Sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2):281-298(in Chinese)

    Yu Y J, Chen H B, Dang Y, et al. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2020, 726:138679
    Ng E L, Lwanga E H, Eldridge S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627:1377-1388
    Yang W W, Ceng P, Adams C, et al. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles[J]. Soil Biology and Biochemistry, 2021, 155:108179
    Ziajahromi S, Kumar A, Neale P, et al. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomus tepperi) in synthetic and river water[J]. Science of the Total Environment, 2019, 671:971-975
    de Souza Machado A A, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10):6044-6052
    Mbachu O, Jenkins G, Kaparaju P, et al. The rise of artificial soil carbon inputs:Reviewing microplastic pollution effects in the soil environment[J]. The Science of the Total Environment, 2021, 780:146569
    Lozano Y M, Lehnert T, Linck L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass[J]. Frontiers in Plant Science, 2021, 12:616645
    鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000:23-106
    高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社, 2006:21-22
    梁晓华, 施娅云, 张燕. 干旱胁迫对三种蕨类植物生理生化的影响[J]. 楚雄师范学院学报, 2020, 35(6):55-61

    Liang X H, Shi Y Y, Zhang Y. Effects of drought stress on physiological and biochemical changes of several pteridophytes[J]. Journal of Chuxiong Normal University, 2020, 35(6):55-61(in Chinese)

    张蜀秋. 植物生理学实验技术教程[M]. 北京:科学出版社, 2011:211-217
    连加攀. 聚苯乙烯纳米塑料(PSNPs)对小麦单一及镉联合毒性研究[D]. 天津:南开大学, 2020:29-34 Lian J P. Single and combined toxicity of polystyrene nanoplastics (PSNPs) and cadmium to wheat (Triticum aestivum L.)[D]. Tianjin:Nankai University, 2020:29

    -34(in Chinese)

    徐荣乐, 海热提. 塑料地膜对小麦种子萌发及幼苗抗氧化酶系统的影响[J]. 生态环境学报, 2010, 19(11):2702-2707

    Xu R L, Hai R T. Effects of plastic film on seed germination and the activities of antioxidant enzyme of wheat (Triticum aestivum L.) seedlings[J]. Ecology and Environmental Sciences, 2010, 19(11):2702-2707(in Chinese)

    Li Z X, Li R, Li Q, et al. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 2020, 255:127041
    项洪涛, 郑殿峰, 何宁, 等. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展[J]. 草业学报, 2021, 30(1):208-219

    Xiang H T, Zheng D F, He N, et al. Research progress on the physiological response of plants to low temperature and the amelioration effectiveness of exogenous ABA[J]. Acta Prataculturae Sinica, 2021, 30(1):208-219(in Chinese)

    张丽萍, 刘志强, 金竹萍, 等. H2S对镉胁迫下白菜幼苗根系渗透胁迫的调节作用[J]. 农业环境科学学报, 2016, 35(2):247-252

    Zhang L P, Liu Z Q, Jin Z P, et al. Regulation of H2S on Cd-induced osmotic stress in roots of Chinese cabbage seedling[J]. Journal of Agro-Environment Science, 2016, 35(2):247-252(in Chinese)

    吴艳梅. 淡水微藻对水体微(纳米)塑料胁迫的响应研究[D]. 泉州:华侨大学, 2019:26 Wu Y M. Study the response of freshwater microalgae to micro (nano) plastics in water stress[D]. Quanzhou:Huaqiao University, 2019:26(in Chinese)
    李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9):928-934

    Li L Z, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9):928-934(in Chinese)

    Zhang M J, Zhao Y, Qin X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil[J]. The Science of the Total Environment, 2019, 688:470-478
    胡均如, 张敏. 热处理提高采后果蔬低温贮藏期间活性氧清除能力的机制[J]. 食品与发酵工业, 2021, 47(12):269-276

    Hu J R, Zhang M. Mechanism of heat treatment to improve the active oxygen scavenging ability of postharvest vegetables during low temperature storage[J]. Food and Fermentation Industries, 2021, 47(12):269-276(in Chinese)

    Ziajahromi S, Kumar A, Neale P, et al. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomus tepperi) in synthetic and river water[J]. Science of the Total Environment, 2019, 671:971-975
    Li Y, Zhang S S, Jiang W S, et al. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L.[J]. Environmental Science and Pollution Research International, 2013, 20(2):1117-1123
    Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250:831-838
    王婷. 上海市河道水体微塑料分布特征及塑料微珠对铜绿微囊藻的毒理研究[D]. 上海:上海海洋大学, 2021:45 Wang T. The distribution characteristics of microplastics in river water bodies of Shanghai and the toxicological study of plastic microbeads on Microcystis aeruginosa[D]. Shanghai:Shanghai Ocean University, 2021:45(in Chinese)
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410
    李汶璐, 王志超, 杨文焕, 等. 微塑料对沉积物细菌群落组成和多样性的影响[J]. 环境科学, 2022, 43(5):2606-2613

    Li W L, Wang Z C, Yang W H, et al. Effects of microplastics on bacterial community composition and diversity in sediments[J]. Environmental Science, 2022, 43(5):2606-2613(in Chinese)

    侯军华. 聚乙烯微塑料对土壤团聚体性质及微生物多样性影响研究[D]. 兰州:兰州交通大学, 2020:42 Hou J H. Effects of polyethylene microplastics on soil aggregate properties and microbial diversity[D]. Lanzhou:Lanzhou Jiatong University, 2020:42(in Chinese)
    张强. 高温堆肥降解污泥微塑料及微生物代谢耦合机制[D]. 兰州:兰州交通大学, 2021:42 Zhang Q. High-temperature composting degradation of sludge microplastics and microbial metabolism coupling mechanism[D]. Lanzhou:Lanzhou Jiatong University, 2021:42(in Chinese)
    Carson H S, Nerheim M S, Carroll K A, et al. The plastic-associated microorganisms of the north Pacific gyre[J]. Marine Pollution Bulletin, 2013, 75(1-2):126-132
    Liu H F, Yang X M, Liu G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185:907-917
  • 加载中
计量
  • 文章访问数:  1414
  • HTML全文浏览数:  1414
  • PDF下载数:  40
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-16

2种微米级聚苯乙烯颗粒对菘蓝幼苗生长及土壤群落结构的影响

    通讯作者: 赵晓祥, E-mail: zxx@dhu.edu.cn
    作者简介: 杨雅杰(1997-),女,硕士研究生,研究方向为微塑料对土培植物的影响,E-mail:ysust2015@163.com
  • 东华大学环境科学与工程学院,上海 201620
基金项目:

国家重点研发计划项目(2019YFC0408604)

摘要: 微塑料由于其粒径小、比表面积高、难降解等特性对土壤环境、农作物的生长都带来了危害。以菘蓝为供试植物,探究了(775.90±61.66) nm和(50.07±1.29) μm (分别命名为S组和B组)的聚苯乙烯微塑料(PS-NPs)对菘蓝种子和幼苗生长及根际土壤微生物组成的影响。结果显示,2种粒径的PS-NPs对菘蓝种子发芽率和幼苗生物量均有促进作用,S组对菘蓝叶片细胞膜的伤害率大于B组。PS-NPs的添加使菘蓝叶片中丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和过氧化物酶(POD)活性升高,且微塑料浓度越高,影响越大。较高浓度(1 000 mg·kg-1)的微塑料胁迫下,B组菘蓝叶片中3种酶活性均分别比S组高出46.99%(SOD)、61.56%(CAT)、14.91%(POD)。此外高通量测序结果表明PS-NPs的添加增加了菘蓝根际土壤微生物群落多样性,群落多样性大小为:S组>B组>CK,处理组与对照组相比优势菌门相同但丰度有所变化,PS-NPs的添加使放线菌门(Actinobacteria)和变形菌门(Proteobacteria)丰度升高,而绿弯菌门(Chloroflexi)丰度降低。

English Abstract

参考文献 (37)

目录

/

返回文章
返回