背角无齿蚌超氧化物歧化酶基因的克隆及多溴联苯醚-47和多溴联苯醚-209对其表达的影响

陈佳炜, 邵向阳, 黄天科, 李媛, 张龙慧, 董艳美, 王梦琪, 张科, 齐金旭, 夏西超, 邱茂林. 背角无齿蚌超氧化物歧化酶基因的克隆及多溴联苯醚-47和多溴联苯醚-209对其表达的影响[J]. 生态毒理学报, 2020, 15(6): 195-204. doi: 10.7524/AJE.1673-5897.20191127001
引用本文: 陈佳炜, 邵向阳, 黄天科, 李媛, 张龙慧, 董艳美, 王梦琪, 张科, 齐金旭, 夏西超, 邱茂林. 背角无齿蚌超氧化物歧化酶基因的克隆及多溴联苯醚-47和多溴联苯醚-209对其表达的影响[J]. 生态毒理学报, 2020, 15(6): 195-204. doi: 10.7524/AJE.1673-5897.20191127001
Chen Jiawei, Shao Xiangyang, Huang Tianke, Li Yuan, Zhang Longhui, Dong Yanmei, Wang Mengqi, Zhang Ke, Qi Jinxu, Xia Xichao, Qiu Maolin. Effects of PBDE-47 and PBDE-209 on the AwSOD Expression in Freshwater Bivalve Anodonta woodiana[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 195-204. doi: 10.7524/AJE.1673-5897.20191127001
Citation: Chen Jiawei, Shao Xiangyang, Huang Tianke, Li Yuan, Zhang Longhui, Dong Yanmei, Wang Mengqi, Zhang Ke, Qi Jinxu, Xia Xichao, Qiu Maolin. Effects of PBDE-47 and PBDE-209 on the AwSOD Expression in Freshwater Bivalve Anodonta woodiana[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 195-204. doi: 10.7524/AJE.1673-5897.20191127001

背角无齿蚌超氧化物歧化酶基因的克隆及多溴联苯醚-47和多溴联苯醚-209对其表达的影响

    作者简介: 陈佳炜(1998-),男,本科,研究方向为环境健康学,E-mail:626189846@qq.com
    通讯作者: 夏西超, E-mail: xiaxichao8336@163.com
  • 基金项目:

    河南省高等学校重点研究项目(20A330002,19B330002);河南省联合基金资助项目(182300410123)

  • 中图分类号: X171.5

Effects of PBDE-47 and PBDE-209 on the AwSOD Expression in Freshwater Bivalve Anodonta woodiana

    Corresponding author: Xia Xichao, xiaxichao8336@163.com
  • Fund Project:
  • 摘要: 超氧化物歧化酶(SOD)是机体防御和氧化应激损伤的关键酶之一。为了探讨多溴联苯醚PBDE-47和PBDE-209对背角无齿蚌的胁迫效应,本研究克隆出AwSOD全基因序列,分析PBDE-47和PBDE-209对AwSOD表达的影响。背角无齿蚌AwSOD cDNA全长由949个核苷酸组成,开放阅读框包含465 bp核苷酸,编码155个氨基酸。AwSOD包含Cu/ZnSOD家族GKHGFHVHEFGDNT和GNAGARSACGVI这2个特征性标签序列。AwSOD氨基酸序列与Cu/ZnSOD具有较高的同源性。AwSOD与淡水贝类亲缘关系最近,其次海洋双壳类,最后是脊椎动物、腹足类和甲壳类。AwSOD在肝胰脏中表达水平较高,在鳃和斧足为中等水平,在外套膜、闭壳肌和心脏中表达水平较低。与对照组相比,PBDE-47和PBDE-209处理对肝胰腺中AwSOD mRNA水平具有显著的诱导作用。PBDE-47处理对鳃中AwSOD mRNA水平在早期具有显著诱导作用,高剂量组在后期呈现下调效应;PBDE-209处理后鳃中AwSOD mRNA水平显著增加。结果表明,PBDE-47和PBDE-209对背角无齿蚌AwSOD表达水平诱导作用与增强机体抗氧化能力和胁迫效应有关。
  • 加载中
  • Fromme H, Becher G, Hilger B, et al. Brominated flame retardants-Exposure and risk assessment for the general population[J]. International Journal of Hygiene and Environmental Health, 2016, 219(1):1-23
    Roberts S C, Noyes P D, Gallagher E P, et al. Species-specific differences and structure-activity relationships in the debromination of PBDE congeners in three fish species[J]. Environmental Science & Technology, 2011, 45(5):1999-2005
    Zhang R Q, Guo J Y, Wu F C, et al. Toxicity reference values for polybrominated diphenyl ethers:Risk assessment for predatory birds and mammals from two Chinese lakes[J]. Reviews of Environmental Contamination and Toxicology, 2014, 229:111-137
    Li Z H, Panton S, Marshall L, et al. Spatial analysis of polybrominated diphenylethers (PBDEs) and polybrominated biphenyls (PBBs) in fish collected from UK and proximate marine waters[J]. Chemosphere, 2018, 195:727-734
    Tan K, Zhang B, Ma H Y, et al. Oxidative stress responses of golden and brown noble scallops Chlamys nobilis to acute cold stress[J]. Fish & Shellfish Immunology, 2019, 95:349-356
    Umasuthan N, Bathige S D, Revathy K S, et al. A manganese superoxide dismutase (MnSOD) from Ruditapes philippinarum:Comparative structural- and expressional-analysis with copper/zinc superoxide dismutase (Cu/ZnSOD) and biochemical analysis of its antioxidant activities[J]. Fish & Shellfish Immunology, 2012, 33(4):753-765
    Che M X, Wang R, Li X X, et al. Expanding roles of superoxide dismutases in cell regulation and cancer[J]. Drug Discovery Today, 2016, 21(1):143-149
    Yang W Y, Liu W X, Wen C G, et al. A superoxide dismutase (MnSOD) with identification and functional characterization from the freshwater mussel Cristaria plicata[J]. Fish & Shellfish Immunology, 2019, 91:180-187
    Zhou Z, Liu Z Q, Wang L G, et al. Oxidative stress, apoptosis activation and symbiosis disruption in giant clam Tridacna crocea under high temperature[J]. Fish & Shellfish Immunology, 2019, 84:451-457
    Kim U J, Jo H, Lee I S, et al. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes[J]. Chemosphere, 2015, 137:108-114
    Soo P, Todd P A. The behaviour of giant clams (Bivalvia:Cardiidae)[J]. Marine Biology, 2014, 161(12):2699-2717
    Xia X C, Yu R X, Li M B, et al. Molecular cloning and characterization of two genes encoding peroxiredoxins from freshwater bivalve Anodonta woodiana:Antioxidative effect and immune defense[J]. Fish & Shellfish Immunology, 2018, 82:476-491
    Jing W X, Lang L, Lin Z G, et al. Cadmium bioaccumulation and elimination in tissues of the freshwater mussel Anodonta woodiana[J]. Chemosphere, 2019, 219:321-327
    Davies R, Zou E M. Polybrominated diphenyl ethers disrupt molting in neonatal Daphnia magna[J]. Ecotoxicology, 2012, 21(5):1371-1380
    Wang C, Huan P, Yue X, et al. Molecular characterization of a glutathione peroxidase gene and its expression in the selected Vibrio-resistant population of the clam Meretrix meretrix[J]. Fish & Shellfish Immunology, 2011, 30(6):1294-1302
    Li C H, Ni D J, Song L S, et al. Molecular cloning and characterization of a catalase gene from Zhikong scallop Chlamys farreri[J]. Fish & Shellfish Immunology, 2008, 24(1):26-34
    Bao Y B, Li L, Wu Q, et al. Cloning, characterization, and expression analysis of extracellular copper/zinc superoxide dismutase gene from bay scallop Argopecten irradians[J]. Fish & Shellfish Immunology, 2009, 27(1):17-25
    Xu H H, Ma H, Hu B Q, et al. Molecular cloning, identification and functional characterization of a novel intracellular Cu-Zn superoxide dismutase from the freshwater mussel Cristaria plicata[J]. Fish & Shellfish Immunology, 2010, 29(4):615-622
    Atli G, Canli E G, Eroglu A, et al. Characterization of antioxidant system parameters in four freshwater fish species[J]. Ecotoxicology and Environmental Safety, 2016, 126:30-37
    Park H, Ahn I Y, Lee J K, et al. Molecular cloning, characterization, and the response of manganese superoxide dismutase from the Antarctic bivalve Laternula elliptica to PCB exposure[J]. Fish & Shellfish Immunology, 2009, 27(3):522-528
    Lyu K, Zhu X X, Chen R, et al. Molecular cloning of manganese superoxide dismutase gene in the cladoceran Daphnia magna:Effects of microcystin, nitrite, and cadmium on gene expression profiles[J]. Aquatic Toxicology, 2014, 148:55-64
    Gómez-Anduro G A, Ascencio-Valle F, Peregrino-Uriarte A B, et al. Cytosolic manganese superoxide dismutase genes from the white shrimp Litopenaeus vannamei are differentially expressed in response to lipopolysaccharides, white spot virus and during ontogeny[J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2012, 162(4):120-125
    Woo S, Yum S, Park H S, et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2009, 149(3):289-299
    Hung M N, Shiomi R, Nozaki R, et al. Identification of novel copper/zinc superoxide dismutase (Cu/ZnSOD) genes in kuruma shrimp Marsupenaeus japonicas[J]. Fish & Shellfish Immunology, 2014, 40(2):472-477
    Cheng W, Tung Y H, Liu C H, et al. Molecular cloning and characterisation of copper/zinc superoxide dismutase (Cu, Zn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii[J]. Fish & Shellfish Immunology, 2006, 21(1):102-112
    Bautista-Covarrubias J C, Aguilar-Juárez M, Voltolina D, et al. Immunological response of white shrimp (Litopenaeus vannamei) to sublethal concentrations of malathion and endosulfan, and their mixture[J]. Ecotoxicology and Environmental Safety, 2020, 188:109893
    郑双艳, 孟超, 刘清, 等. 重金属对褶纹冠蚌Cu/ZnSOD基因mRNA表达和酶活性的影响[J]. 南昌大学学报:理科版, 2018, 42(1):67-71

    Zheng S Y, Meng C, Liu Q, et al. Effects of heavy metal on mRNA expression and enzymatic activity of Cu/Zn superoxide dismutase in Cristaria plicata[J]. Journal of Nanchang University:Natural Science, 2018, 42(1):67-71(in Chinese)

    Wollenberger L, Dinan L, Breitholtz M. Brominated flame retardants:Activities in a crustacean development test and in an ecdysteroid screening assay[J]. Environmental Toxicology and Chemistry, 2005, 24(2):400-407
    de Andrade K Q, Moura F A, dos Santos J M, et al. Oxidative stress and inflammation in hepatic diseases:Therapeutic possibilities of N-acetylcysteine[J]. International Journal of Molecular Sciences, 2015, 16(12):30269-30308
    Hallmann A, Konieczna L, Swiezak J, et al. Aromatisation of steroids in the bivalve Mytilus trossulus[J]. PeerJ, 2019, 7:e6953
    Hou L, Jiang J Y, Gan Z W, et al. Spatial distribution of organophosphorus and brominated flame retardants in surface water, sediment, groundwater, and wild fish in Chengdu, China[J]. Archives of Environmental Contamination and Toxicology, 2019, 77(2):279-290
    Fu L F, Pei J, Zhang Y Y, et al. Polybrominated diphenyl ethers and alternative halogenated flame retardants in mollusks from the Chinese Bohai Sea:Levels and interspecific differences[J]. Marine Pollution Bulletin, 2019, 142:551-558
  • 加载中
计量
  • 文章访问数:  1102
  • HTML全文浏览数:  1102
  • PDF下载数:  24
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-27

背角无齿蚌超氧化物歧化酶基因的克隆及多溴联苯醚-47和多溴联苯醚-209对其表达的影响

    通讯作者: 夏西超, E-mail: xiaxichao8336@163.com
    作者简介: 陈佳炜(1998-),男,本科,研究方向为环境健康学,E-mail:626189846@qq.com
  • 平顶山学院医学院, 平顶山 476000
基金项目:

河南省高等学校重点研究项目(20A330002,19B330002);河南省联合基金资助项目(182300410123)

摘要: 超氧化物歧化酶(SOD)是机体防御和氧化应激损伤的关键酶之一。为了探讨多溴联苯醚PBDE-47和PBDE-209对背角无齿蚌的胁迫效应,本研究克隆出AwSOD全基因序列,分析PBDE-47和PBDE-209对AwSOD表达的影响。背角无齿蚌AwSOD cDNA全长由949个核苷酸组成,开放阅读框包含465 bp核苷酸,编码155个氨基酸。AwSOD包含Cu/ZnSOD家族GKHGFHVHEFGDNT和GNAGARSACGVI这2个特征性标签序列。AwSOD氨基酸序列与Cu/ZnSOD具有较高的同源性。AwSOD与淡水贝类亲缘关系最近,其次海洋双壳类,最后是脊椎动物、腹足类和甲壳类。AwSOD在肝胰脏中表达水平较高,在鳃和斧足为中等水平,在外套膜、闭壳肌和心脏中表达水平较低。与对照组相比,PBDE-47和PBDE-209处理对肝胰腺中AwSOD mRNA水平具有显著的诱导作用。PBDE-47处理对鳃中AwSOD mRNA水平在早期具有显著诱导作用,高剂量组在后期呈现下调效应;PBDE-209处理后鳃中AwSOD mRNA水平显著增加。结果表明,PBDE-47和PBDE-209对背角无齿蚌AwSOD表达水平诱导作用与增强机体抗氧化能力和胁迫效应有关。

English Abstract

参考文献 (32)

目录

/

返回文章
返回