3种青霉素类抗生素对大肠杆菌的时间毒性微板分析法建立及其联合抑菌作用

骆纵纵, 张瑾, 周娜娜, 陈如荔, 洪俊华. 3种青霉素类抗生素对大肠杆菌的时间毒性微板分析法建立及其联合抑菌作用[J]. 生态毒理学报, 2022, 17(2): 189-199. doi: 10.7524/AJE.1673-5897.20210810003
引用本文: 骆纵纵, 张瑾, 周娜娜, 陈如荔, 洪俊华. 3种青霉素类抗生素对大肠杆菌的时间毒性微板分析法建立及其联合抑菌作用[J]. 生态毒理学报, 2022, 17(2): 189-199. doi: 10.7524/AJE.1673-5897.20210810003
Luo Zongzong, Zhang Jin, Zhou Nana, Chen Ruli, Hong Junhua. Establishment of Time-dependent Microplate Toxicity Analysis Method for Combined Antibacterial Effects of Three Penicillin Antibiotics to Escherichia coli[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 189-199. doi: 10.7524/AJE.1673-5897.20210810003
Citation: Luo Zongzong, Zhang Jin, Zhou Nana, Chen Ruli, Hong Junhua. Establishment of Time-dependent Microplate Toxicity Analysis Method for Combined Antibacterial Effects of Three Penicillin Antibiotics to Escherichia coli[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 189-199. doi: 10.7524/AJE.1673-5897.20210810003

3种青霉素类抗生素对大肠杆菌的时间毒性微板分析法建立及其联合抑菌作用

    作者简介: 骆纵纵(1994—),女,硕士研究生,研究方向为污染化学与生态毒理学,E-mail: 1911342858@qq.com
    通讯作者: 张瑾, E-mail: ginnzy@163.com
  • 基金项目:

    国家自然科学基金资助项目(21677001);安徽省省级质量工程项目(2020jyxm0355);安徽建筑大学校级质量工程项目(2020xgk02,2020jy75)

  • 中图分类号: X171.5

Establishment of Time-dependent Microplate Toxicity Analysis Method for Combined Antibacterial Effects of Three Penicillin Antibiotics to Escherichia coli

    Corresponding author: Zhang Jin, ginnzy@163.com
  • Fund Project:
  • 摘要: 除了浓度外,时间也是影响污染物对生物毒性作用的重要因素。为了考察持续暴露下青霉素类抗生素对大肠杆菌(Escherichia coli, E. coli)的联合抑菌作用,以哌拉西林钠(piperacillin sodium, PIP)、青霉素G钾(penicillin G potassium, PEN)和青霉素V钾盐(penicillin V potassium salt, PHE)为研究对象,以96孔微板为实验载体,通过调整培养基成分比例、培养条件、测试时间、毒性指标计算以及微板设计等进行优化,建立了基于E. coli的时间毒性微板分析法(time-dependent microplate toxicity analysis, t-MTA),系统考察了3种抗生素以及均匀设计射线法设计的三元混合物体系(PIP-PEN-PHE)对E. coli在不同暴露时间0.25、2、4、8和12 h的抑菌作用,运用浓度加和(concentration addition, CA)模型分析了抗生素联合抑菌作用类型。结果表明,建立的t-MTA可以测定3种青霉素类抗生素及其混合物对E. coli在不同暴露时间、不同暴露浓度的抑菌作用数据,且3种抗生素及其三元混合物对E. coli的抑菌作用均具有明显的时间依赖性,浓度-效应曲线均为“S”型;以半数效应浓度的负对数(pEC50)为毒性大小指标,在暴露8~12 h时,3种抗生素对E. coli抑菌活性为PIP(pEC50=4.46~5.21)> PEN(pEC50=4.16~4.39)>PHE(pEC50=4.01~4.39),三元混合体系的5条射线对E. coli的抑菌作用为R4>R5>R3>R2>R1,且与混合物组分中的PIP浓度比正相关(R=0.9189, RMSE=0.0703),即混合物毒性具有时间和组分浓度比依赖抑菌性;3种抗生素及其三元混合物对E. coli的抑菌作用,在同一暴露时间与药物的浓度呈正相关,暴露浓度相同时,与暴露时间呈正相关;依据CA模型,三元混合体系整体表现为典型的加和作用。
  • 加载中
  • Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment [J]. Marine Pollution Bulletin, 2005, 51(1-4): 218-223
    董欣琦, 陈敏, 张瑾, 等. 氨基糖苷类抗生素混合物对蛋白核小球藻的时间依赖毒性[J]. 安徽建筑大学学报, 2016, 24(6): 67-73

    Dong X Q, Chen M, Zhang J, et al. Time-dependent toxicity of aminoglycoside antibiotics to Chlorella pyrenoidosa [J]. Journal of Anhui Jianzhu University, 2016, 24(6): 67-73 (in Chinese)

    崔泽林, 郭晓奎. 食物链中抗生素耐药性基因的转移[J]. 中国微生态学杂志, 2011, 23(1): 89-92

    , 97 Cui Z L, Guo X K. Transfer of antibiotic resistance genes in the food chain [J]. Chinese Journal of Microbiology, 2011, 23 (1): 89-92, 97 (in Chinese)

    Xue B M, Zhang R J, Wang Y H, et al. Antibiotic contamination in a typical developing city in South China: Occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities [J]. Ecotoxicology and Environmental Safety, 2013, 92: 229-236
    Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data [J]. Toxicology Letters, 2002, 131(1-2): 5-17
    殷强, 付峥嵘. 我国水环境中抗生素污染的研究进展[J]. 安徽农业科学, 2017, 45(31): 50-51

    , 55 Yin Q, Fu Z R. Research progress of antibiotic pollution in water environment in China [J]. Journal of Anhui Agricultural Sciences, 2017, 45(31): 50-51, 55 (in Chinese)

    Kapil A. The challenge of antibiotic resistance: Need to contemplate [J]. The Indian Journal of Medical Research, 2005, 121(2): 83-91
    张永信. 青霉素类的药用特点与选用[J]. 上海医药, 2003, 24(10): 449-451

    Zhang Y X. Medicinal characteristics and selection of penicillins [J]. Shanghai Medical & Pharmaceutical Journal, 2003, 24(10): 449-451 (in Chinese)

    万林峰. 浅谈青霉素类抗生素的特点及临床应用[J]. 求医问药(下半月), 2012, 10(2): 627
    张藜莉, 李静. 半合成青霉素的临床应用概况[J]. 中国医院用药评价与分析, 2006, 6(1): 53-54
    汤雨晴, 叶倩, 郑维义. 抗生素类药物的研究现状和进展[J]. 国外医药(抗生素分册), 2019, 40(4): 295-301 Tang Y Q, Ye Q, Zheng W Y. Research status and development of antibiotics [J]. World Notes on Antibiotics, 2019, 40(4): 295-301 (in Chinese)
    Areej S, Sattar A, Javeed A, et al. Diphenhydramine and levofloxacin combination therapy against antimicrobial resistance in respiratory tract infections [J]. Future Microbiology, 2021, 16: 409-420
    高美英. 抗生素耐药性的挑战与控制对策[J]. 医药导报, 2004(4): 210-212 Gao M Y. Challenges and control countermeasures of antibiotic resistance [J]. Medical Herald, 2004

    (4): 210-212 (in Chinese)

    Martens E, Demain A L. The antibiotic resistance crisis, with a focus on the United States [J]. The Journal of Antibiotics, 2017, 70: 520-526
    张瑾, 刘树深, 邓慧萍, 等. 吡啶类离子液体对青海弧菌Q67的混合毒性评估[J]. 生态毒理学报, 2013, 8(6): 955-962

    Zhang J, Liu S S, Deng H P, et al. Evaluation on the combined toxicity of pyridium-based ionic liquids to Vibrio qinghaiensis sp.-Q67 [J]. Asian Journal of Ecotoxicology, 2013, 8(6): 955-962 (in Chinese)

    丁婷婷, 张瑾, 董欣琪, 等. 4种农药对青海弧菌Q67混合毒性作用的评估[J]. 安徽农业大学学报, 2017, 44(5): 817-822

    Ding T T, Zhang J, Dong X Q, et al. Evaluation of the joint toxicity of four pesticides towards Vibrio qinghaiensis-Q67 [J]. Journal of Anhui Agricultural University, 2017, 44(5): 817-822 (in Chinese)

    Baas J, Jager T, Kooijman B. Understanding toxicity as processes in time [J]. The Science of the Total Environment, 2010, 408(18): 3735-3739
    杨启文, 王辉, 徐英春, 等. 环丙沙星或阿米卡星联合β-内酰胺类抗生素对多重耐药铜绿假单胞菌的体外联合抑菌效应研究[J]. 中国实用内科杂志, 2006, 26(9): 685-687

    Yang Q W, Wang H, Xu Y C, et al. In vitro activity of ciprofloxacin or amikacin combined with β-lactams against multidrug-resistant Pseudomonas aeruginosa strains [J]. Chinese Journal of Practical Internal Medicine, 2006, 26(9): 685-687 (in Chinese)

    吴群, 黄楠, 刘贝欣, 等. 六种抗菌药单用与联合应用对大肠杆菌的体外抑菌效果观察[J]. 黑龙江畜牧兽医, 2018(10): 88-91 Wu Q, Huang N, Liu B X, et al. Antibacterial effect of six antimicrobial agents with single or combined application against Escherichia coli in vitro [J]. Heilongjiang Animal Science and Veterinary Medicine, 2018

    (10): 88-91 (in Chinese)

    易力, 赵嘉盟, 杨洪, 等. 鹅、鱼源大肠杆菌的耐药性研究[J]. 黑龙江畜牧兽医, 2021(12): 80-84 Yi L, Zhao J M, Yang H, et al. Study on drug resistance of goose and fish-derived Escherichia coli [J]. Heilongjiang Animal Science and Veterinary Medicine, 2021

    (12): 80-84 (in Chinese)

    Yang Y X, Xu Z H, Zhang Y Q, et al. A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa [J]. Journal of Microbiology, 2012, 50(6): 987-993
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria [J]. Journal of Colloid and Interface Science, 2004, 275(1): 177-182
    Kuok C F, Hoi S O, Hoi C F, et al. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study [J]. Experimental Biology and Medicine, 2017, 242(7): 731-743
    Ruan X C, Deng X L, Tan M L, et al. In vitro antibiofilm activity of resveratrol against avian pathogenic Escherichia coli [J]. BMC Veterinary Research, 2021, 17(1): 249
    Nyuykonge B, van Amelsvoort L, Eadie K, et al. Comparison of disc diffusion, E-test, and a modified CLSI broth microdilution method for in vitro susceptibility testing of itraconazole, posaconazole, and voriconazole against Madurella mycetomatis [J]. Antimicrobial Agents and Chemotherapy, 2021, 65(9): e0043321
    Wilke M S, Lovering A L, Strynadka N C. β-lactam antibiotic resistance: A current structural perspective [J]. Current Opinion in Microbiology, 2005, 8(5): 525-533
    Zhang J, Liu S S, Yu Z Y, et al. The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp. -Q67 [J]. Journal of Hazardous Materials, 2013, 258-259: 70-76
    Liu S S, Xiao Q F, Zhang J, et al. Uniform design ray in the assessment of combined toxicities of multi-component mixtures [J]. Science Bulletin, 2016, 61(1): 52-58
    Zhang J, Liu S S, Liu H L. Effect of ionic liquid on the toxicity of pesticide to Vibrio-qinghaiensis sp.-Q67 [J]. Journal of Hazardous Materials, 2009, 170(2-3): 920-927
    梁丽营, 曾鸿鹄, 龙茜, 等. 基于群体感应抑制剂与磺胺对大肠杆菌联合毒性效应的QSAR模型建立[J]. 环境化学, 2017, 36(1): 92-99

    Liang L Y, Zeng H H, Long X, et al. Establishment of a QSAR model based on the joint effects of quorum sensing inhibitors and sulfonamides on Escherichia coli [J]. Environmental Chemistry, 2017, 36(1): 92-99 (in Chinese)

    Zhang J, Tao M T, Song C C, et al. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis-Q67 induced by a key component [J]. RSC Advances, 2020, 10(21): 12365-12372
    Dou R N, Liu S S, Mo L Y, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos [J]. Environmental Science and Pollution Research International, 2011, 18(5): 734-742
    Zhang Y H, Liu S S, Liu H L, et al. Evaluation of the combined toxicity of 15 pesticides by uniform design [J]. Pest Management Science, 2010, 66(8): 879-887
    Howard G J, Webster T F. Generalized concentration addition: A method for examining mixtures containing partial agonists [J]. Journal of Theoretical Biology, 2009, 259(3): 469-477
    Newman M C, McCloskey J T. Time-to-event analyses of ecotoxicity data [J]. Ecotoxicology, 1996, 5(3): 187-196
    祖玉梅. β-内酰胺类抗生素的应用与发展现状[J]. 中国实用医药, 2010, 5(30): 246-248
    Devi K P, Nisha S A, Sakthivel R, et al. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane [J]. Journal of Ethnopharmacology, 2010, 130(1): 107-115
    Tao M T, Bian Z Q, Zhang J, et al. Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa [J]. Environmental Science Processes & Impacts, 2020, 22(10): 2095-2103
    方翼, 王睿. β-内酰胺类药物抗生素后效应研究概况[J]. 中国医院药学杂志, 1998, 18(4): 170-172
    Ruppé É, Woerther P L, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli [J]. Annals of Intensive Care, 2015, 5(1): 61
    张新战. 青霉素类抗生素的使用[J]. 中国医学创新, 2009, 6(25): 181-182
    Groten J P, Feron V J, Sühnel J. Toxicology of simple and complex mixtures [J]. Trends in Pharmacological Sciences, 2001, 22(6): 316-322
    于泳, 张雅文, 张晓欢, 等. 兽药滥用的成因分析: 基于南京地区兽药使用情况的调研[J]. 江苏科技信息, 2015(23): 76-78 Yu Y, Zhang Y W, Zhang X H, et al. Analysis on the causes of drug abuse: Based on the research of the use of veterinary drugs in Nanjing [J]. Jiangsu Science & Technology Information, 2015

    (23): 76-78 (in Chinese)

    Khameneh B, Diab R, Ghazvini K, et al. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them [J]. Microbial Pathogenesis, 2016, 95: 32-42
    Ocampo P S, Lázár V, Papp B, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent [J]. Antimicrobial Agents and Chemotherapy, 2014, 58(8): 4573-4582
  • 加载中
计量
  • 文章访问数:  2558
  • HTML全文浏览数:  2558
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-08-10

3种青霉素类抗生素对大肠杆菌的时间毒性微板分析法建立及其联合抑菌作用

    通讯作者: 张瑾, E-mail: ginnzy@163.com
    作者简介: 骆纵纵(1994—),女,硕士研究生,研究方向为污染化学与生态毒理学,E-mail: 1911342858@qq.com
  • 安徽建筑大学环境与能源工程学院,安徽省水污染控制与废水资源化重点实验室,合肥 230601
基金项目:

国家自然科学基金资助项目(21677001);安徽省省级质量工程项目(2020jyxm0355);安徽建筑大学校级质量工程项目(2020xgk02,2020jy75)

摘要: 除了浓度外,时间也是影响污染物对生物毒性作用的重要因素。为了考察持续暴露下青霉素类抗生素对大肠杆菌(Escherichia coli, E. coli)的联合抑菌作用,以哌拉西林钠(piperacillin sodium, PIP)、青霉素G钾(penicillin G potassium, PEN)和青霉素V钾盐(penicillin V potassium salt, PHE)为研究对象,以96孔微板为实验载体,通过调整培养基成分比例、培养条件、测试时间、毒性指标计算以及微板设计等进行优化,建立了基于E. coli的时间毒性微板分析法(time-dependent microplate toxicity analysis, t-MTA),系统考察了3种抗生素以及均匀设计射线法设计的三元混合物体系(PIP-PEN-PHE)对E. coli在不同暴露时间0.25、2、4、8和12 h的抑菌作用,运用浓度加和(concentration addition, CA)模型分析了抗生素联合抑菌作用类型。结果表明,建立的t-MTA可以测定3种青霉素类抗生素及其混合物对E. coli在不同暴露时间、不同暴露浓度的抑菌作用数据,且3种抗生素及其三元混合物对E. coli的抑菌作用均具有明显的时间依赖性,浓度-效应曲线均为“S”型;以半数效应浓度的负对数(pEC50)为毒性大小指标,在暴露8~12 h时,3种抗生素对E. coli抑菌活性为PIP(pEC50=4.46~5.21)> PEN(pEC50=4.16~4.39)>PHE(pEC50=4.01~4.39),三元混合体系的5条射线对E. coli的抑菌作用为R4>R5>R3>R2>R1,且与混合物组分中的PIP浓度比正相关(R=0.9189, RMSE=0.0703),即混合物毒性具有时间和组分浓度比依赖抑菌性;3种抗生素及其三元混合物对E. coli的抑菌作用,在同一暴露时间与药物的浓度呈正相关,暴露浓度相同时,与暴露时间呈正相关;依据CA模型,三元混合体系整体表现为典型的加和作用。

English Abstract

参考文献 (45)

目录

/

返回文章
返回