分子动力学模拟揭示PFAS诱导PPARα激活的分子机制
Molecular Dynamics Simulation Reveals the Molecular Mechanism of PFAS-induced PPARα Activation
-
摘要: 全/多氟烷基化合物(PFAS)可通过激活过氧化物酶体增殖物激活受体α (PPARα)诱导肝毒性,然而PFAS与PPARα相互作用的分子机制尚不清晰。本研究基于高斯加速分子动力学(GaMD)和分子力学-广义波恩表面积法(MM-GBSA),计算了7种传统和新型PFAS与PPARα的结合自由能(ΔGbind),结果发现ΔGbind与PFAS激活PPARα的半数效应浓度的对数值(logEC50)之间存在显著的相关性(r=0.82, P<0.05)。此外,氟化碳原子的数量与ΔGbind正相关,且含羧基的PFAS的ΔGbind通常比含磺酸基的PFAS更低。通过分析结构稳定性、氢键分布和配体-残基接触,揭示了PFAS的激活活性与其在PPARα口袋内的结合模式直接相关。活性较强的PFAS,优先结合到由螺旋(H) H3, H7, H11和H12组成的口袋中,与ILE354, HIS440和CYS276等关键残基形成相互作用。结果有助于筛选具有PPARα激活效应的PFAS,支持PFAS类化学品的毒性效应评估。
-
关键词:
- 全/多氟烷基化合物 /
- 过氧化物酶体增殖物激活受体α /
- 肝毒性 /
- 分子动力学
Abstract: Per- and polyfluoroalkyl substances (PFAS) could induce hepatotoxicity through the activation of peroxisome proliferator-activated receptor α (PPARα). However, the molecular mechanism of PFAS-induced PPARα activation remains unclear. This study calculated the binding free energy (ΔGbind) of seven legacy and emerging PFASs with PPARα based on Gaussian accelerated molecular dynamics (GaMD) and molecular mechanics-generalized Born surface area (MM-GBSA). The results indicated a significant correlation (r=0.82, P<0.05) between ΔGbind and the logarithmic value of half maximal effective concentration (logEC50) of PFAS activating PPARα. Additionally, the number of fluorocarbon atoms positively correlated with ΔGbind, and PFAS containing carboxyl groups generally had a lower ΔGbind compared to those containing sulfonate groups. The activation activity of PFAS towards PPARα was found to be directly associated with their binding patterns within the PPARα ligand-binding pocket, as revealed through the analysis of structural stability, hydrogen bond distribution and ligand-residue contacts. PFAS with stronger activities were observed to preferentially bind within the pocket composed of H3, H7, H11 and H12, interacting with key residues such as ILE354, HIS440 and CYS276. These results contribute to the screening of PFAS with PPARα activation effect, and support the evaluation of toxic effects of PFAS. -
-
Glüge J, Scheringer M, Cousins I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science Processes & Impacts, 2020, 22(12): 2345-2373 Kotlarz N, McCord J, Collier D, et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina [J]. Environmental Health Perspectives, 2020, 128(7): 77005 Ding G H, Xue H H, Yao Z W, et al. Occurrence and distribution of perfluoroalkyl substances (PFASs) in the water dissolved phase and suspended particulate matter of the Dalian Bay, China [J]. Chemosphere, 2018, 200: 116-123 Khan E A, Grønnestad R, Krøkje Å, et al. Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture [J]. Environment International, 2023, 173: 107838 Murase W, Kubota A, Ikeda-Araki A, et al. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays [J]. Toxicology, 2023, 494: 153577 Yang W, Ling X, He S J, et al. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: An integrated approach [J]. Environment International, 2023, 178: 108138 Li C H, Ren X M, Ruan T, et al. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate [J]. Environmental Science & Technology, 2018, 52(5): 3232-3239 Bougarne N, Weyers B, Desmet S J, et al. Molecular actions of PPARα in lipid metabolism and inflammation [J]. Endocrine Reviews, 2018, 39(5): 760-802 Maeda K, Hirano M, Hayashi T, et al. Elucidating key characteristics of PFAS binding to human peroxisome proliferator-activated receptor alpha: An explainable machine learning approach [J]. Environmental Science & Technology, 2024, 58(1): 488-497 朱婧涵, 薛峤, 刘娴, 等. p,p’-DDE与雄激素受体突变体H874Y及T877A激动性作用机制的理论研究[J]. 生态毒理学报, 2017, 12(3): 214-224 Zhu J H, Xue Q, Liu X, et al. Theoretical investigation on agonism mechanism of p,p’-DDE via interacting with androgen receptor mutants H874Y and T877A [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 214-224(in Chinese)
Tan H Y, Wang X X, Hong H X, et al. Structures of endocrine-disrupting chemicals determine binding to and activation of the estrogen receptor α and androgen receptor [J]. Environmental Science & Technology, 2020, 54(18): 11424-11433 Guan R N, Luan F, Li N Q, et al. Identification of molecular initiating events and key events leading to endocrine disrupting effects of PFOA: Integrated molecular dynamic, transcriptomic, and proteomic analyses [J]. Chemosphere, 2022, 307(Pt 2): 135881 Brown P J, Stuart L W, Hurley K P, et al. Identification of a subtype selective human PPARalpha agonist through parallel-array synthesis [J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(9): 1225-1227 Nielsen G, Heiger-Bernays W J, Schlezinger J J, et al. Predicting the effects of per- and polyfluoroalkyl substance mixtures on peroxisome proliferator-activated receptor alpha activity in vitro [J]. Toxicology, 2022, 465: 153024 Muegge I, Hu Y. Recent advances in alchemical binding free energy calculations for drug discovery [J]. ACS Medicinal Chemistry Letters, 2023, 14(3): 244-250 Tian C, Kasavajhala K, Belfon K A A, et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution [J]. Journal of Chemical Theory and Computation, 2020, 16(1): 528-552 He X B, Man V H, Yang W, et al. A fast and high-quality charge model for the next generation general AMBER force field [J]. The Journal of Chemical Physics, 2020, 153(11): 114502 Jakalian A, Jack D B, Bayly C I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: Ⅱ. Parameterization and validation [J]. Journal of Computational Chemistry, 2002, 23(16): 1623-1641 Götz A W, Williamson M J, Xu D, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born [J]. Journal of Chemical Theory and Computation, 2012, 8(5): 1542-1555 Elber R, Ruymgaart A P, Hess B. SHAKE parallelization [J]. The European Physical Journal Special Topics, 2011, 200(1): 211-223 Harvey M J, De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU hardware [J]. Journal of Chemical Theory and Computation, 2009, 5(9): 2371-2377 Miao Y L, Feher V A, McCammon J A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation [J]. Journal of Chemical Theory and Computation, 2015, 11(8): 3584-3595 Roe D R, Cheatham T E 3rd. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data [J]. Journal of Chemical Theory and Computation, 2013, 9(7): 3084-3095 Madhu M K, Shewani K, Murarka R K. Biased signaling in mutated variants of β2-adrenergic receptor: Insights from molecular dynamics simulations [J]. Journal of Chemical Information and Modeling, 2024, 64(2): 449-469 Mays S G, Hercules D, Ortlund E A, et al. The nuclear receptor LRH-1 discriminates between ligands using distinct allosteric signaling circuits [J]. Protein Science, 2023, 32(10): e4754 Rastelli G, del Rio A, Degliesposti G, et al. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA [J]. Journal of Computational Chemistry, 2010, 31(4): 797-810 Lai T T, Eken Y, Wilson A K. Binding of per- and polyfluoroalkyl substances to the human pregnane X receptor [J]. Environmental Science & Technology, 2020, 54(24): 15986-15995 Rosenmai A K, Ahrens L, le Godec T, et al. Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells [J]. Journal of Applied Toxicology, 2018, 38(2): 219-226 Apaza Ticona L, Sánchez Sánchez-Corral J, Flores Sepúlveda A, et al. Novel 1,2,4-oxadiazole compounds as PPAR-α ligand agonists: A new strategy for the design of antitumour compounds [J]. RSC Medicinal Chemistry, 2023, 14(7): 1377-1388 Ishibashi H, Hirano M, Kim E Y, et al. In vitro and in silico evaluations of binding affinities of perfluoroalkyl substances to Baikal seal and human peroxisome proliferator-activated receptor α [J]. Environmental Science & Technology, 2019, 53(4): 2181-2188 Kamata S, Oyama T, Saito K, et al. PPARα ligand-binding domain structures with endogenous fatty acids and fibrates [J]. iScience, 2020, 23(11): 101727 -

计量
- 文章访问数: 2591
- HTML全文浏览数: 2591
- PDF下载数: 265
- 施引文献: 0