不能将值 NULL 插入列 'id',表 'aje_website.dbo.t_web_site_access';列不允许有空值。INSERT 失败。 语句已终止。 欢迎访问《生态毒理学报》编辑部网站!

首页 | 期刊简介 | 编委会 | 投稿要求 | 化学品管理信息动态 | 学术会议 | 专辑 | 毒理学测试技术设备 | 订购本刊 | 联系我们 | English version

贾贝贝1,邵振洲1,王瑞1,渠瀛4,张融2,*,饶凯锋3,#,姜安3,刘勇5,关永1. 基于机器视觉的鱼类行为特征提取与分析[J]. 生态毒理学报, 2017, 12(5): 193-203
基于机器视觉的鱼类行为特征提取与分析
Extraction and Analysis of Fish Behavior Based on Machine Vision
投稿时间:2016-10-12  修订日期:2016-10-31
DOI:10.7524/AJE.1673-5897.20161012001
中文关键词:  生物式水质监测  青鳉鱼  机器视觉  生理特征  运动特征
英文关键词:biological water quality monitoring  medaka  machine vision  physiological characteristics  movement characteristics
基金项目:863课题(2014AA06A506);国家自然科学基金青年基金(21307150);北京市优秀人才培养资助项目(2014000020124G135);中国科学院科技服务网络计划(STS计划)(KFJ-SW-STS-171);广东省省级科技计划项目(2016B020240007)
作者单位
贾贝贝1,邵振洲1,王瑞1,渠瀛4,张融2,*,饶凯锋3,#,姜安3,刘勇5,关永1 1.首都师范大学成像技术北京市高精尖创新中心,轻型工业机器人与安全验证实验室北京 100048 2.北京航空航天大学 机械工程及自动化学院北京 100191 3.中国科学院生态环境研究中心 环境水质学国家重点实验室北京 100085 4.田纳西大学 电气工程与计算机科学学院美国田纳西州 37996 5.无锡中科水质环境技术有限公司无锡 214024 
摘要点击次数: 191
全文下载次数: 241
中文摘要:
      近年来,水污染问题备受关注。生物式水质监测成为目前国家环境保护工作的重要任务之一。为准确监测水质污染情况,本文以青鳉鱼(Oryzias latipes)为研究对象,采用非接触式的机器视觉监测技术,提取青鳉鱼的生理特征(呼吸频率)和运动特征(胸鳍和尾鳍的摆动频率),并分析这些特征与水质之间的关系。本文采用支持向量机(Support Vector Machine, SVM)准确提取鱼鳃,并根据鱼鳃呼吸面积大小变化计算出鱼的呼吸频率。基于形态学细化算法提取青鳉鱼骨架,求出胸鳍和尾鳍的摆动频率。结果显示:不同浓度铜离子暴露实验测得的青鳉鱼生理特征和运动特征与实际情况一致;通过对不同铜离子浓度下的毒性实验数据对比,发现了青鳉鱼的生理特征和运动特征会随不同的铜离子浓度发生相应变化,可以作为水质监测的评价标准。
  
AuthorAffiliation
Jia Beibei1, Shao Zhenzhou1, Wang Rui1, Qu Ying4, Zhang Rong2,*, Rao Kaifeng3,#, Jiang An3, Liu Yong5, Guan Yong11. Beijing Advanced Innovation Center for Imaging Technology, Light Industrial Robot and Security Verification Laboratory, Capital Normal University, Beijing 100048, China 2. College of Mechanical Engineering and Automation, Beihang University, Beijing 100048, China 3. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 4. Department of Electrical Engineering and Computer Science, The University of Tennessee, Tennessee 37996, USA 5.Wuxi CASA Environmental Technology Co., Ltd, Wuxi 214024, China
英文摘要:
      Recently, the problem of water pollution is drawing the increasing attention. The research of biological water quality monitoring has become one of the important tasks to protect the national environment. In order to accurately monitor the water pollution, the medaka is chosen as the research object in this paper. The non-contact machine vision monitoring technology is employed to extract the physiological characteristics (respiratory frequency) and movement characteristics (swing frequency of pectoral fins and tail fin), and analyze the relationship between these characteristics and water quality. The respiratory frequency is firstly calculated based on the area change of gills, which are classified using SVM. Secondly, the medaka skeleton is extracted based on morphological thinning algorithm to find the swing frequency of pectoral fins and tail fin. The results show the exposure experiments are performed using the different concentrations of copper ion to measure the physiological characteristics and movement characteristics. The experimental results are consistent with the actual ones. Meanwhile, when the concentration of copper ion changes, the physiological characteristics and movement characteristics of medaka change correspondingly. It is indicated that the behaviors of medaka can be used as the evaluation criteria for the water quality monitoring.
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第3810807位访问者   京ICP备 09058833 号

主办单位:中国科学院生态环境研究中心     单位地址:北京市海淀区双清路18号

 服务热线:010-62941072       传真:010-62923563       邮编:100085    Email: stdlxb@rcees.ac.cn

    本系统由北京勤云科技发展有限公司设计

0463美女美女3764美女美女ktv