Figure 6 ,Table 1
    • 图  1  2000—2021年锰基催化剂活化过硫酸盐相关论文发表数量

      Figure 1.  The number of publications related to persulfate activation by Mn-based catalysts from 2000 to 2021

    • 图  2  α-、β-和γ-MnO2的理化性质与反应速率(kobs)之间的关系

      Figure 2.  Relationships between the reaction rate (kobs) and physicochemical properties of α-, β-, and γ-MnO2

    • 图  3  α-MnO2(a),β-MnO2(b),γ-MnO2(c)和δ-MnO2(d)的SEM图像;α-MnO2@Co3O4(e),β-MnO2@Co3O4(f),γ-MnO2@Co3O4(g)和δ-MnO2@Co3O4(h)的SEM图像[79]

      Figure 3.  SEM images ofα-MnO2(a),β-MnO2(b),γ-MnO2(c), andδ-MnO2(d); SEM images ofα-MnO2@Co3O4(e),β-MnO2@Co3O4(f),γ-MnO2@Co3O4(g) andδ-MnO2@Co3O4(h)[79]

    • 图  4  NCM催化剂的XRD谱图(a),活化PMS机理示意图(b),NCM-650的SEM图像(c)和Co、Mn元素分布(d, e)[54]

      Figure 4.  NCM XRD patterns(a), PMS activation mechanism (b), SEM images (c), cobalt and manganese elements mapping distribution of NCM-650 (d, e)[54]

    • 图  5  LaMnO3和Cu-LaMnO3钙钛矿的循环伏安曲线(a),La 3d、Mn 3s、Mn 2p和Cu 2p的XPS谱图(b),SMX在Cu-LaMnO3/PMS体系中的降解机理(c)[95]

      Figure 5.  Cyclic voltammetry curve of LaMnO3 and Cu-LaMnO3 (a), XPS spectra of La 3d, Mn 3s, Mn 2p and Cu 2p in LaMnO3 and Cu-LaMnO3 (b) and degradation mechanism of SMX in Cu-LaMnO3/PMS system (c)[95]

    • 图  6  CMO(a),HNT(b),40-CMO/HNT(c)的TEM图像,CMO和40-CMO/HNT的XPS光谱(d),40-CMO/HNT活化PMS产生自由基的机理示意图(e)[99]

      Figure 6.  TEM images of bare CMO (a), HNT (b) and 40-CMO/HNT (c),XPS spectra of survey for bare CMO and 40-CMO/HNT (d), Schematic illustration of radical generation mechanism through PMS activated by 40-CMO/HNT (e)[99]