Hawliczek A, Nota B, Cenijn P, et al. Developmental toxicity and endocrine disrupting potency of 4-azapyrene, benzo[b]fluorene and retene in the zebrafish Danio rerio [J]. Reproductive Toxicology, 2012, 33(2):213-223
|
Botsou F, Hatzianestis I. Polycyclic aromatic hydrocarbons (PAHs) in marine sediments of the Hellenic coastal zone, eastern Mediterranean:Levels, sources and toxicological significance[J]. Journal of Soils and Sediments, 2012, 12(2):265-277
|
母清林,方杰,邵君波,等.长江口及浙江近岸海域表层沉积物中多环芳烃分布、来源与风险评价[J].环境科学, 2015, 36(3):839-846
Mu Q L, Fang J, Shao J B, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Yangtze Estuary and Zhejiang coastal areas[J]. Environmental Science, 2015, 36(3):839-846(in Chinese)
|
欧冬妮,刘敏,许世远,等.长江口滨岸水和沉积物中多环芳烃分布特征与生态风险评价[J].环境科学, 2009, 30(10):3043-3049
Ou D N, Liu M, Xu S Y, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in overlying waters and surface sediments from the Yangtze estuarine and coastal areas[J]. Environmental Science, 2009, 30(10):3043-3049(in Chinese)
|
Escher B I, Stapleton H M, Schymanski E L. Tracking complex mixtures of chemicals in our changing environment[J]. Science, 2020, 367(6476):388-392
|
Escher B I, Neale P A, Villeneuve D L. The advantages of linear concentration-response curves for in vitro bioassays with environmental samples[J]. Environmental Toxicology and Chemistry, 2018, 37(9):2273-2280
|
Neale P A, Ait-Aissa S, Brack W, et al. Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling[J]. Environmental Science&Technology, 2015, 49(24):14614-14624
|
Hu X X, Shi W, Yu N Y, et al. Bioassay-directed identification of organic toxicants in water and sediment of Tai Lake, China[J]. Water Research, 2015, 73:231-241
|
Nivala J, Neale P A, Haasis T, et al. Application of cell-based bioassays to evaluate treatment efficacy of conventional and intensified treatment wetlands[J]. Environmental Science:Water Research&Technology, 2018, 4(2):206-217
|
Hebert A, Feliers C, Lecarpentier C, et al. Bioanalytical assessment of adaptive stress responses in drinking water:A predictive tool to differentiate between micropollutants and disinfection by-products[J]. Water Research, 2018, 132:340-349
|
K nig M, Escher B I, Neale P A, et al. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis[J]. Environmental Pollution, 2017, 220:1220-1230
|
刘敏,侯立军,邹惠仙,等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学, 2001, 21(4):343-346
Liu M, Hou L J, Zou H X, et al. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of tidalflats of the Yangtze Estuary[J]. China Environmental Science, 2001, 21(4):343-346(in Chinese)
|
尹方,黄宏,刘海玲,等.长江口及毗邻海域沉积物中多环芳烃分布、来源及风险评价[J].安全与环境学报, 2010, 10(3):94-98
Yin F, Huang H, Liu H L, et al. PAHs in surface sediments from Yangtze River Estuary and its adjacent sea area:The distribution, sources and risk assessment[J]. Journal of Safety and Environment, 2010, 10(3):94-98(in Chinese)
|
沈小明,吕爱娟,沈加林,等.长江口启东-崇明岛航道沉积物中多环芳烃分布来源及生态风险评价[J].岩矿测试, 2014, 33(3):374-380
Shen X M, Lv A J, Shen J L, et al. Distribution characteristics, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in waterway sediments from Qidong and Chongming Island of Yangtze River Estuary[J]. Rock and Mineral Analysis, 2014, 33(3):374-380(in Chinese)
|
王波,李正炎,傅明珠,等.长江口及其邻近海域表层沉积物中多环芳烃的分布和生态风险评价[J].中国海洋大学学报:自然科学版, 2007, 37(S1):83-87
Wang B, Li Z Y, Fu M Z, et al. Distribution and ecological risk assessment of PAHs in surface sediments from the Yangtze Estuary and its adjacent areas[J]. Periodical of Ocean University of China, 2007, 37(S1):83-87(in Chinese)
|
International Organization for Standardization (ISO). Water quality:Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test). Part 3:Method using freeze-dried bacteria[R]. Geneva:ISO, 2007
|
Escher B I, Baumer A, Kai B, et al. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri [J]. Environmental Science:Processes and Impacts, 2017, 19:414-428
|
Tang J Y M, McCarty S, Glenn E, et al. Mixture effects of organic micropollutants present in water:Towards the development of effect-based water quality trigger values for baseline toxicity[J]. Water Research, 2013, 47(10):3300-3314
|
Escher B I, Allinson M, Altenburger R, et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays[J]. Environmental Science&Technology, 2014, 48(3):1940-1956
|
Hashmi M A K, Escher B I, Krauss M, et al. Effect-directed analysis (EDA) of Danube River water sample receiving untreated municipal wastewater from Novi Sad, Serbia[J]. Science of the Total Environment, 2018, 624:1072-1081
|
Bräunig J, Tang J Y M, Warne M S J, et al. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon[J]. Chemosphere, 2016, 156:181-190
|
Li J Y, Tang J Y M, Jin L, et al. Understanding bioavailability and toxicity of sediment-associated contaminants by combining passive sampling with in vitro bioassays in an urban river catchment[J]. Environmental Toxicology and Chemistry, 2013, 32(12):2888-2896
|
Neale P A, Altenburger R, Aït-Aïssa S, et al. Development of a bioanalytical test battery for water quality monitoring:Fingerprinting identified micropollutants and their contribution to effects in surface water[J]. Water Research, 2017, 123:734-750
|
Jacobs M W, Coates J A, Delfino J J, et al. Comparison of sediment extract microtox® toxicity with semi-volatile organic priority pollutant concentrations[J]. Archives of Environmental Contamination and Toxicology, 1993, 24(4):461-468
|
Neale P A, Munz N A, Aït-Aïssa S, et al. Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams[J]. The Science of the Total Environment, 2017, 576:785-795
|
袁广旺,郑江鹏,花卫华,等.吕泗渔场表层沉积物中多环芳烃分布特征及生态风险评价[J].海洋开发与管理, 2015, 32(10):78-83
|
万希鹏.沈家门渔港海域环境质量评价的探讨[J].环境污染与防治, 1981, 3(2):37-42
|
张玉凤,吴金浩,李楠,等.渤海北部表层沉积物中多环芳烃分布与来源分析[J].海洋环境科学, 2016, 35(1):88-94
, 122Zhang Y F, Wu J H, Li N, et al. Distribution and source identification of polycyclic aromatic hydrocarbon of surface sediments from the North Bohai Sea[J]. Marine Environmental Science, 2016, 35(1):88-94, 122(in Chinese)
|
刘霞.长江口及其邻近海域沉积物有机污染物分布特征及对有机质来源的指示意义[D].青岛:中国海洋大学, 2012:32-39Liu X. Distribution of hydrophobic pollutants in sediment from Yangtze Estuary and adjacent area and itsimplication to sources of organic matter[D]. Qingdao:Ocean University of China, 2012:32
-39(in Chinese)
|
张明,唐访良,吴志旭,等.千岛湖表层沉积物中多环芳烃污染特征及生态风险评价[J].中国环境科学, 2014, 34(1):253-258
Zhang M, Tang F L, Wu Z X, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Xin'anjiang Reservoir[J]. China Environmental Science, 2014, 34(1):253-258(in Chinese)
|
Witt G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea[J]. Marine Pollution Bulletin, 1995, 31(4-12):237-248
|
Long E R, Macdonald D D, Smith S L, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Management, 1995, 19(1):81-97
|
Hwang K, Lee J, Kwon I, et al. Large-scale sediment toxicity assessment over the 15, 000 km of coastline in the Yellow and Bohai Seas, East Asia[J]. Science of the Total Environment, 2021, 792:148371
|
Jin L, Xie J W, Wong C K C, et al. Contributions of city-specific fine particulate matter (PM2.5) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China[J]. Environmental Science&Technology, 2019, 53(5):2881-2891
|