隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖过程抗生素使用与耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 2015, 10(5):20-34 Sui Q W, Zhang J Y, Wei Y S, et al. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production:An overview[J]. Asian Journal of Ecotoxicology, 2015, 10(5):20-34(in Chinese)
李厚禹, 邵振鲁, 李碧菡, 等. 畜禽环境中抗生素的去除及其风险评估[J]. 生态毒理学报, 2020, 15(1):79-93 Li H Y, Shao Z L, Li B H, et al. The removal and risk assessment of antibiotics in livestock environment[J]. Asian Journal of Ecotoxicology, 2020, 15(1):79-93(in Chinese)
田志梅, 崔艺燕, 杜宗亮, 等. 抗生素替代物在畜禽养殖中的研究及应用进展[J]. 动物营养学报, 2020, 32(4):1516-1525 Tian Z M, Cui Y Y, Du Z L, et al. Advances in researches and applications of antibiotic alternatives in livestock breeding[J]. Chinese Journal of Animal Nutrition, 2020, 32(4):1516-1525(in Chinese)
宣雄智, 李文嘉, 李绍钰, 等. 藻类在猪和鸡养殖生产中的应用研究进展[J]. 中国畜牧兽医, 2019, 46(11):3262-3269 Xuan X Z, Li W J, Li S Y, et al. Advances in the application of algae in pig and chicken production[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(11):3262-3269(in Chinese)
Holdt S L, Kraan S. Bioactive compounds in seaweed:Functional food applications and legislation[J]. Journal of Applied Phycology, 2011, 23(3):543-597
Stengel D B, Connan S, Popper Z A. Algal chemodiversity and bioactivity:Sources of natural variability and implications for commercial application[J]. Biotechnology Advances, 2011, 29(5):483-501
He Y, Yuan Q B, Mathieu J, et al. Antibiotic resistance genes from livestock waste:Occurrence, dissemination, and treatment[J]. NPJ Clean Water, 2020, 3:4
Bhowmick S, Mazumdar A, Moulick A, et al. Algal metabolites:An inevitable substitute for antibiotics[J]. Biotechnology Advances, 2020, 43:107571
Silva A, Silva S A, Lourenço-Lopes C, et al. Antibacterial use of macroalgae compounds against foodborne pathogens[J]. Antibiotics, 2020, 9(10):E712
Kini S, Divyashree M, Mani M K, et al. Algae and Cyanobacteria as a Source of Novel Bioactive Compounds for Biomedical Applications[M]//Advances in Cyanobacterial Biology. Amsterdam:Elsevier, 2020:173-194
Blunt J W, Copp B R, Hu W P, et al. Marine natural products[J]. Natural Product Reports, 2007, 24(1):31-86
Lin Q, Sun H H, Yao K, et al. The prevalence, antibiotic resistance and biofilm formation of Staphylococcus aureus in bulk ready-to-eat foods[J]. Biomolecules, 2019, 9(10):E524
Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters[J]. Cell, 2014, 157(3):539-548
Makkar H P S, Tran G, Heuzé V, et al. Seaweeds for livestock diets:A review[J]. Animal Feed Science and Technology, 2016, 212:1-17
任淑静, 罗静如, Maria Garcia Suares. 海藻提取物有利于提高肉鸡生产性能[J]. 国外畜牧学(猪与禽), 2020, 40(11):86-89 Ren S J, Luo J R, Suares M G. Patented seaweed technology helps immunity and production[J]. Animal Science Abroad (Pigs and Poultry), 2020, 40(11):86-89(in Chinese)
任淑静, Maria Garcia Suarez. 海洋巨藻多糖的免疫调节活性[J]. 国外畜牧学(猪与禽), 2020, 40(12):70-72 Ren S J, Suarez M G. Immunomodulating activities of macroalgae[J]. Animal Science Abroad (Pigs and Poultry), 2020, 40(12):70-72(in Chinese)
Vieira E F, Soares C, Machado S, et al. Seaweeds from the Portuguese coast as a source of proteinaceous material:Total and free amino acid composition profile[J]. Food Chemistry, 2018, 269:264-275
Cherry P, Yadav S, Strain C R, et al. Prebiotics from seaweeds:An ocean of opportunity?[J]. Marine Drugs, 2019, 17(6):E327
Pérez M J, Falqué E, Domínguez H. Antimicrobial action of compounds from marine seaweed[J]. Marine Drugs, 2016, 14(3):52
Liu M, Hansen P E, Lin X K. Bromophenols in marine algae and their bioactivities[J]. Marine Drugs, 2011, 9(7):1273-1292
Kamei Y, Isnansetyo A. Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga[J]. International Journal of Antimicrobial Agents, 2003, 21(1):71-74
Wei Y X, Liu Q, Xu C J, et al. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii[J]. Journal of Aquatic Food Product Technology, 2016, 25(3):323-333
Lee D S, Kang M S, Hwang H J, et al. Synergistic effect between dieckol from Ecklonia stolonifera and β -lactams against methicillin-resistant Staphylococcus aureus[J]. Biotechnology and Bioprocess Engineering, 2008, 13(6):758-764
Nagayama K, Iwamura Y, Shibata T, et al. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome[J]. The Journal of Antimicrobial Chemotherapy, 2002, 50(6):889-893
Thomas N V, Kim S K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae[J]. Environmental Toxicology and Pharmacology, 2011, 32(3):325-335
Hussain M A, Dawson C O. Economic impact of food safety outbreaks on food businesses[J]. Foods, 2013, 2(4):585-589
Bumunang E W, McAllister T A, Zaheer R, et al. Characterization of non-O157Escherichia coli from cattle faecal samples in the north-west Province of South Africa[J]. Microorganisms, 2019, 7(8):E272
Moraes J O, Cruz E A, Souza E G F, et al. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration[J]. International Journal of Food Microbiology, 2018, 281:90-100
He F, Yang Y, Yang G, et al. Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03[J]. Food Control, 2010, 21(9):1257-1262
Vishwakarma J, Vavilala S L. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii[J]. Journal of Applied Microbiology, 2019, 127(4):1004-1017
Abou Zeid A H, Aboutabl E A, Sleem A A, et al. Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities[J]. Carbohydrate Polymers, 2014, 113:62-66
Kadam S U, O'Donnell C P, Rai D K, et al. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea:Ultrasound assisted extraction, characterization and bioactivity[J]. Marine Drugs, 2015, 13(7):4270-4280
Sellimi S, Maalej H, Rekik D M, et al. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed[J]. International Journal of Biological Macromolecules, 2018, 119:633-644
Besednova N N, Zaporozhets T S, Somova L M, et al. Review:Prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori[J]. Helicobacter, 2015, 20(2):89-97
Pangestuti R, Kim S K. Seaweed Proteins, Peptides, and Amino Acids[M]//Seaweed Sustainability. Amsterdam:Elsevier, 2015:125-140
Lordan S, Ross R P, Stanton C. Marine bioactives as functional food ingredients:Potential to reduce the incidence of chronic diseases[J]. Marine Drugs, 2011, 9(6):1056-1100
Makkar H P S, Tran G, Heuzé V, et al. Seaweeds for livestock diets:A review[J]. Animal Feed Science and Technology, 2016, 212:1-17
Admassu H, Gasmalla M A A, Yang R J, et al. Bioactive peptides derived from seaweed protein and their health benefits:Antihypertensive, antioxidant, and antidiabetic properties[J]. Journal of Food Science, 2018, 83(1):6-16
El Shafay S M, Ali S S, El-Sheekh M M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria[J]. The Egyptian Journal of Aquatic Research, 2016, 42(1):65-74
Anjali K P, Sangeetha B M, Devi G, et al. Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum):The compound characterization and functional applications in medicine-a comparative study[J]. Journal of Photochemistry and Photobiology B, Biology, 2019, 200:111622
Ren D C, Bedzyk L A, Ye R W, et al. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli[J]. Biotechnology and Bioengineering, 2004, 88(5):630-642
Karpiński T M, Adamczak A. Fucoxanthin-An antibacterial carotenoid[J]. Antioxidants, 2019, 8(8):239
Volk R B, Furkert F H. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth[J]. Microbiological Research, 2006, 161(2):180-186
Zheng L, Chen H M, Han X T, et al. Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve[J]. World Journal of Microbiology and Biotechnology, 2005, 21(2):201-206
Wächter G A, Franzblau S G, Montenegro G, et al. Inhibition of Mycobacterium tuberculosis growth by saringosterol from Lessonia nigrescens[J]. Journal of Natural Products, 2001, 64(11):1463-1464
Morais T, Inácio A, Coutinho T, et al. Seaweed potential in the animal feed:A review[J]. Journal of Marine Science and Engineering, 2020, 8(8):559
Gurusamy S, Kulanthaisamy M R, Hari D G, et al. Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterilas for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens[J]. Journal of Photochemistry and Photobiology B, Biology, 2019, 193:118-130
Sugiharto S, Yudiarti T, Isroli I, et al. Effect of feeding duration of Spirulina platensis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks[J]. South African Journal of Animal Science, 2018, 48(1):98
El-Ghany W A A. Microalgae in poultry field:A comprehensive perspectives[J]. Advances in Animal and Veterinary Sciences, 2020, 8(9):888-897
Kang H K, Salim H M, Akter N, et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens[J]. Journal of Applied Poultry Research, 2013, 22(1):100-108
Roque B M, Salwen J K, Kinley R, et al. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent[J]. Journal of Cleaner Production, 2019, 234:132-138
Shanmugapriya B, Babu S S. Research article dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks[J]. International Journal of Recent Scientific Research, 2015, 6(2):2650-2653
Namra M M M, Ragab M S, Aly M M M, et al. Effect of dietary supplementation of algae meal (Spirulina platensis) as growth promoter on performance of broiler chickens[J]. Egyptian Poultry Science Journal, 2018, 38(2):375-389
夏伦斌, 黄燕, 左瑞华, 等. 海藻多糖对肉鸡抗氧化性能及存活率的影响[J]. 畜牧与饲料科学, 2016, 37(4):24-26 Xia L B, Huang Y, Zuo R H, et al. Effects of dietary supplementation of algal polysaccharide on antioxidant capacity and surviving rate of broilers[J]. Animal Husbandry and Feed Science, 2016, 37(4):24-26(in Chinese)
Wang J, Yue H Y, Wu S G, et al. Nutritional modulation of health, egg quality and environmental pollution of the layers[J]. Animal Nutrition, 2017, 3(2):91-96
Ehr I J, Persia M E, Bobeck E A. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed[J]. Poultry Science, 2017, 96(6):1791-1799
Tellez G, Pixley C, Wolfenden R E, et al. Probiotics/direct fed microbials for Salmonella control in poultry[J]. Food Research International, 2012, 45(2):628-633
Kulshreshtha G, Rathgeber B, Stratton G, et al. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens[J]. Poultry Science, 2014, 93(12):2991-3001
McCauley J I, Labeeuw L, Jaramillo-Madrid A C, et al. Management of enteric methanogenesis in ruminants by algal-derived feed additives[J]. Current Pollution Reports, 2020, 6(3):188-205
Yan L, Lim S U, Kim I H. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(12):1742-1747
Dierick N, Ovyn A, de Smet S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs[J]. Journal of the Science of Food and Agriculture, 2009, 89(4):584-594
Michiels J, Skrivanova E, Missotten J, et al. Intact brown seaweed (Ascophyllum nodosum) in diets of weaned piglets:Effects on performance, gut bacteria and morphology and plasma oxidative status[J]. Journal of Animal Physiology and Animal Nutrition, 2012, 96(6):1101-1111
Dierick N, Ovyn A, de Smet S. In vitro assessment of the effect of intact marine brown macro-algae Ascophyllum nodosum on the gut flora of piglets[J]. Livestock Science, 2010, 133(1-3):154-156
Ø verland M, Mydland L, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals[J]. Journal of the Science of Food and Agriculture, 2018, 99:13-24
Morais T, Inácio A, Coutinho T, et al. Seaweed potential in the animal feed:A review[J]. Journal of Marine Science and Engineering, 2020, 8(8):559
Baeza E, Chartrin P, Lessire M, et al. Is it possible to increase n-3 fatty acid content of meat without affecting its technological and/or sensory quality and the growing performance of chickens?[J]. British Poultry Science, 2015, 56(5):543-550
Jamil A, Akanda M, Rahman M, et al. Prebiotic competence of spirulina on the production performance of broiler chickens[J]. Journal of Advanced Veterinary and Animal Research, 2015, 2(3):304
Evans F D, Critchley A T. Seaweeds for animal production use[J]. Journal of Applied Phycology, 2014, 26(2):891-899
Kostik V, Gjorgjeska B, Bauer B, et al. Production of shell eggs enriched with n-3 fatty acids[J]. IOSR Journal of Pharmacy, 2015, 5(8):48-51
王述柏, 贾玉辉, 王利华, 等. 浒苔添加水平对蛋鸡产蛋性能、蛋品质、免疫功能及粪便微生物区系的影响[J]. 动物营养学报, 2013, 25(6):1346-1352 Wang S B, Jia Y H, Wang L H, et al. Enteromorpha prolifera supplemental level:Effects on laying performance, egg quality, immune function and microflora in feces of laying hens[J]. Chinese Journal of Animal Nutrition, 2013, 25(6):1346-1352(in Chinese)
Al-Harthi M A, El-Deek A A. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium) prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens[J]. Italian Journal of Animal Science, 2012, 11(4):e64
Rizk Y S. Effect of dietary green tea and dried seaweed on productive and physiological performance of laying hens during late phase of production[J]. Egyptian Poultry Science Journal, 2017, 37(3):685-706
Choi Y, Lee E C, Na Y, et al. Effects of dietary supplementation with fermented and non-fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(10):1654-1659
Katayama M, Fukuda T, Okamura T, et al. Effect of dietary addition of seaweed and licorice on the immune performance of pigs[J]. Nihon Chikusan Gakkaiho, 2011, 82(2):274-281