Rodayan A, Roy R, Yargeau V. Oxidation products of sulfamethoxazole in ozonated secondary effluent [J]. Journal of Hazardous Materials, 2010, 177(1-3): 237-243
Wang J L, Wang S Z. Microbial degradation of sulfamethoxazole in the environment [J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3573-3582
Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011, 45(5): 1827-1833
Fisch K, Waniek J J, Schulz-Bull D E. Occurrence of pharmaceuticals and UV-filters in riverine run-offs and waters of the German Baltic Sea [J]. Marine Pollution Bulletin, 2017, 124(1): 388-399
Mano H, Okamoto S. Preliminary ecological risk assessment of 10 PPCPs and their contributions to the toxicity of concentrated surface water on an algal species in the middle basin of Tama River [J]. Journal of Water and Environment Technology, 2016, 14(6): 423-436
Lv M, Sun Q, Hu A Y, et al. Pharmaceuticals and personal care products in a mesoscale subtropical watershed and their application as sewage markers [J]. Journal of Hazardous Materials, 2014, 280: 696-705
Wang L, Wu Y C, Zheng Y, et al. Efficient degradation of sulfamethoxazole and the response of microbial communities in microbial fuel cells [J]. RSC Advances, 2015, 5(69): 56430-56437
Managaki S, Murata A, Takada H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta [J]. Environmental Science & Technology, 2007, 41(23): 8004-8010
Faleye A, Adegoke A, Ramluckan K, et al. Antibiotic residue in the aquatic environment: Status in Africa [J]. Open Chemistry, 2018, 16(1): 890-903
陈雪妍. 希瓦氏菌MR-1作用下磺胺甲恶唑的去除效果及强化研究[D]. 北京: 北京林业大学, 2020: 9 Chen X Y. Study on strengthening degradation and effect of sulfamethoxazole by Shewanella oneidensis MR-1 [D]. Beijing: Beijing Forestry University, 2020: 9 (in Chinese)
金凡. 电化学阴极增强Co(Ⅱ)-过硫酸盐体系降解水中磺胺甲恶唑的研究[D]. 重庆: 重庆大学, 2019: 11 Jin F. Research on electrochemical cathode enhanced degradation of sulfamethoxazole from aqueous solution in coupling cobalt(Ⅱ) with persulfate [D]. Chongqing: Chongqing University, 2019: 11 (in Chinese)
刘仁彬, 姜锦林, 张宇峰, 等. 磺胺甲恶唑对斑马鱼胚胎/仔鱼的毒性效应[J]. 环境污染与防治, 2020, 42(3): 310-316 Liu R B, Jiang J L, Zhang Y F, et al. Toxic effects of sulfamethoxazole on zebrafish (Danio rerio) embryo/larva [J]. Environmental Pollution & Control, 2020, 42(3): 310-316 (in Chinese)
Bates J M, Mittge E, Kuhlman J, et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation [J]. Developmental Biology, 2006, 297(2): 374-386
张石云. 抗生素磺胺甲噁唑和微塑料复合暴露对罗非鱼生理效应影响的机制研究[D]. 南京: 南京农业大学, 2019: 50 Zhang S Y. Mechanism of antibiotics sulfamethoxazole and micro-plastics on physiological effects of tilapia [D]. Nanjing: Nanjing Agricultural University, 2019: 50 (in Chinese)
张健, 刘玉兰, 张冬, 等. 水体中二氯乙酰胺以及磺胺甲恶唑对斑马鱼的毒性研究[J]. 环境科技, 2015, 28(6): 34-39 Zhang J, Liu Y L, Zhang D, et al. Toxic research on zebrafish exposed to dichloroacetamide and sulfamethoxazole in aquatic ecosystem [J]. Environmental Science and Technology, 2015, 28(6): 34-39 (in Chinese)
郑艳, 汝少国. 外源化学物质对鱼类生长和GH/IGF-Ⅰ轴的影响[J]. 中国海洋大学学报(自然科学版), 2012, 42(S1): 102-106 Zheng Y, Ru S G. Effects of exogenous chemicals on fish growth and GH/IGF-Ⅰ axis [J]. Periodical of Ocean University of China, 2012, 42(S1): 102-106 (in Chinese)
仲勇. 盐度影响金钱鱼生长及渗透相关基因的表达[D]. 上海: 上海海洋大学, 2019: 4 Zhong Y. Effects of salinity on growth and osmotic gene expression in spotted scat (Scatophagus argus) [D]. Shanghai: Shanghai Ocean University, 2019: 4 (in Chinese)
Jones J I, Clemmons D R. Insulin-like growth factors and their binding proteins: Biological actions [J]. Endocrine Reviews, 1995, 16(1): 3-34
Svensson J, Ohlsson C, Jansson J O, et al. Treatment with the oral growth hormone secretagogue MK-677 increases markers of bone formation and bone resorption in obese young males [J]. Journal of Bone and Mineral Research, 1998, 13(7): 1158-1166
Murray R D, Kim K, Ren S G, et al. Central and peripheral actions of somatostatin on the growth hormone-IGF-Ⅰ axis [J]. The Journal of Clinical Investigation, 2004, 114(3): 349-356
Elonen G E, Spehar R L, Holcombe G W, et al. Comparative toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin to seven freshwater fish species during early life-stage development [J]. Environmental Toxicology and Chemistry, 1998, 17(3): 472-483
Ensenbach U, Nagel R. Toxicity of binary chemical mixtures: Effects on reproduction of zebrafish (Brachydanio rerio) [J]. Archives of Environmental Contamination and Toxicology, 1997, 32(2): 204-210
许冰洁, 张立将, 李春启, 等. 斑马鱼胚胎评价5种药物的发育毒性与模型验证[J]. 中国药理学通报, 2016, 32(1): 74-79 Xu B J, Zhang L J, Li C Q, et al. Model validation and evaluation of developmental toxicity of five drugs using zebrafish embryos [J]. Chinese Pharmacological Bulletin, 2016, 32(1): 74-79 (in Chinese)
刘丽丽, 吕鹏, 闫艳春. 磺胺二甲嘧啶对斑马鱼胚胎的急性毒性作用[J]. 中国渔业质量与标准, 2018, 8(1): 34-39 Liu L L, Lv P, Yan Y C. Acute toxicities of sulfamethazine to zebrafish embryos [J]. Chinese Fishery Quality and Standards, 2018, 8(1): 34-39 (in Chinese)
Organization for Economic Co-operation and Development (OECD). Test No. 236: Fish embryo acute toxicity (FET) test [S]. Paris: OECD, 2013
Qin L, Liu F, Liu H, et al. Evaluation of HODE-15, FDE-15, CDE-15, and BDE-15 toxicity on adult and embryonic zebrafish (Danio rerio) [J]. Environmental Science and Pollution Research International, 2014, 21(24): 14047-14057
吴玉琼, 陈莹, 胡永乐, 等. 四种新型农药对斑马鱼胚胎发育的毒性效应[J]. 生物技术通报, 2017, 33(6): 155-161 Wu Y Q, Chen Y, Hu Y L, et al. Toxic effects of four currently-used pesticides on zebrafish embryonic development [J]. Biotechnology Bulletin, 2017, 33(6): 155-161 (in Chinese)
Lin T, Yu S L, Chen Y Q, et al. Integrated biomarker responses in zebrafish exposed to sulfonamides [J]. Environmental Toxicology and Pharmacology, 2014, 38(2): 444-452
Yan Z Y, Yang Q L, Jiang W L, et al. Integrated toxic evaluation of sulfamethazine on zebrafish: Including two lifespan stages (embryo-larval and adult) and three exposure periods (exposure, post-exposure and re-exposure) [J]. Chemosphere, 2018, 195: 784-792
Yan Z H, Lu G H, Ye Q X, et al. Long-term effects of antibiotics, norfloxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): Effects on growth, development, and reproduction [J]. Environmental Science and Pollution Research, 2016, 23(18): 18222-18228
Liu J Y, Wei T Z, Wu X, et al. Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae [J]. The Science of the Total Environment, 2020, 703: 134724
宋唯一, 刘景, 白琼琼, 等. 有机磷阻燃剂TDMPP对斑马鱼早期器官发育毒性的研究[J]. 中国实用医药, 2020, 15(36): 202-206 Song W Y, Liu J, Bai Q Q, et al. Study on toxicity of organophosphorus flame retardant TDMPP to early organ development of zebrafish [J]. China Practical Medicine, 2020, 15(36): 202-206 (in Chinese)
林浩然. 鱼类生长和生长激素分泌活动的调节[J]. 动物学报, 1996, 42(1): 69-79 Lin H R. The regulation of growth and growth hormone secretion in fish [J]. Acta Zoologica Sinica, 1996, 42(1): 69-79 (in Chinese)
姜雪. 久效磷对早期生长发育阶段斑马鱼GH、GHR1和IGF-Ⅰ基因表达的影响[D]. 青岛: 中国海洋大学, 2009: 49 Jiang X. The effects of monocrotophos on the expression of GH, GHR1 and IGF-Ⅰ of early developmental stages of zebrafish [D]. Qingdao: Ocean University of China, 2009: 49 (in Chinese)
马文阁. 黄颡鱼GH/IGF生长轴基因的序列特征和两性表达差异分析[D]. 武汉: 华中农业大学, 2016: 14 Ma W G. Characterization and sex-dependent expression of GH/IGF axis genes in yellow catfish [D]. Wuhan: Huazhong Agricultural University, 2016: 14 (in Chinese)
Wood A W, Duan C M, Bern H A. Insulin-like growth factor signaling in fish [J]. International Review of Cytology, 2005, 243: 215-285
Baxter R C, Martin J L. Binding proteins for the insulin-like growth factors: Structure, regulation and function [J]. Progress in Growth Factor Research, 1989, 1(1): 49-68
孙文静, 王晓艳, 祁鹏志, 等. 苯并芘(BaP)对褐菖鲉(Sebasticus marmoratus)肝CYP1A1酶活性、基因表达及蛋白表达的影响[J]. 海洋与湖沼, 2018, 49(4): 897-903 Sun W J, Wang X Y, Qi P Z, et al. Effects of benzopyrene on EROD activity, mRNA expression, and protein expression of CYP1A1 in the liver of Sebasticus marmoratus [J]. Oceanologia et Limnologia Sinica, 2018, 49(4): 897-903 (in Chinese)
Borski R J, Tsai W, DeMott-Friberg R, et al. Regulation of somatic growth and the somatotropic axis by gonadal steroids: Primary effect on insulin-like growth factor Ⅰ gene expression and secretion [J]. Endocrinology, 1996, 137(8): 3253-3259
Wang L N, Yan R, Yang Q L, et al. Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos [J]. Ecotoxicology and Environmental Safety, 2020, 201: 110820
Wong A O, Zhou H, Jiang Y H, et al. Feedback regulation of growth hormone synthesis and secretion in fish and the emerging concept of intrapituitary feedback loop [J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2006, 144(3): 284-305
于道德, 宁璇璇, 任贵如, 等. 甲状腺激素在鱼类繁殖中的作用[J]. 海洋科学, 2010, 34(7): 106-110 Yu D D, Ning X X, Ren G R, et al. Functions of thyroid hormone in fish reproduction [J]. Marine Sciences, 2010, 34(7): 106-110 (in Chinese)
Thienpont B, Tingaud-Sequeira A, Prats E, et al. Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis [J]. Environmental Science & Technology, 2011, 45(17): 7525-7532