卢雪蓉, 冯晓丽, 刘朝莹, 等. 纳米银的迁移转化对环境微生物毒性的影响[J]. 生态毒理学报, 2018, 13(5):49-57 Lu X R, Feng X L, Liu Z Y, et al. Impact of migration and transformation of AgNPs on its toxicity towards environmental microorganism[J]. Asian Journal of Ecotoxicology, 2018, 13(5):49-57(in Chinese)
衣俊, 黄俊, 程金平. 纳米银在水环境中的环境行为和毒性效应研究进展[J]. 生态毒理学报, 2015, 10(1):101-109 Yi J, Huang J, Cheng J P. Review of environmental behavior and toxicity of silver nanoparticles in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2015, 10(1):101-109(in Chinese)
Xiu Z M, Zhang Q B, Puppala H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano Letters, 2012, 12(8):4271-4275
Arora S, Jain J, Rajwade J M, et al. Cellular responses induced by silver nanoparticles:In vitro studies[J]. Toxicology Letters, 2008, 179(2):93-100
Shin S H, Ye M K, Kim H S, et al. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells[J]. International Immunopharmacology, 2007, 7(13):1813-1818
Braydich-Stolle L, Hussain S, Schlager J J, et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells[J]. Toxicological Sciences, 2005, 88(2):412-419
Li H B, Chen J, Hou H J, et al. Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation:Mechanism and application to norfloxacin degradation[J]. Water Research, 2017, 126:274-284
González-Plaza J J, Blau K, Milakovic' M, et al. Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments[J]. Environment International, 2019, 130:104735
Kivits T, Broers H P, Beeltje H, et al. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming[J]. Environmental Pollution, 2018, 241:988-998
Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
汪皓琦, 董玉瑛, 汪灵伟, 等. 4种喹诺酮类抗生素对发光菌毒性作用研究[J]. 生态毒理学报, 2017, 12(3):453-459 Wang H Q, Dong Y Y, Wang L W, et al. The toxicity of four quinolones to Photobacterium phosphoreum[J]. Asian Journal of Ecotoxicology, 2017, 12(3):453-459(in Chinese)
Guo Z, Chen G Q, Zeng G M, et al. Determination of inequable fate and toxicity of Ag nanoparticles in a Phanerochaete chrysosporium biofilm system through different sulfide sources[J]. Environmental Science:Nano, 2016, 3(5):1027-1035
Chen A W, Zeng G M, Chen G Q, et al. Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress[J]. Process Biochemistry, 2014, 49(4):589-598
Cornelis G, Kirby J K, Beak D, et al. A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils[J]. Environmental Chemistry, 2010, 7(3):298
Huang Z Z, Chen G Q, Zeng G M, et al. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater[J]. Journal of Hazardous Materials, 2015, 289:174-183
谭琼. 废水处理中复合纳米生物材料白腐真菌的生理响应机制研究[D]. 长沙:湖南大学, 2015:9-10 Tan Q. Physiological response mechanism of composite nano-biomaterial Phanerochaete chrysosporium in the wastewater[D]. Changsha:Hunan University, 2015:9 -10(in Chinese)
Deraman A M, Talib I A, Omar M R, et al. Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes[J]. Sains Malaysiana, 2010, 39(1):83-86
Chen G Q, Zou Z J, Zeng G M, et al. Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution[J]. Chemosphere, 2011, 83(9):1201-1207
Lad U, Kale G M, Bryaskova R. Glucose oxidase encapsulated polyvinyl alcohol-silica hybrid films for an electrochemical glucose sensing electrode[J]. Analytical Chemistry, 2013, 85(13):6349-6355
Zuo Y N, Chen G Q, Zeng G M, et al. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(Ⅱ) by Phanerochaete chrysosporium in aqueous solutions[J]. Journal of Hazardous Materials, 2015, 285:236-244
Sanghi R, Verma P. A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus[J]. Chemical Engineering Journal, 2009, 155(3):886-891
Verma D K, Hasan S H, Ranjan D, et al. Modified biomass of Phanerochaete chrysosporium immobilized on Luffa sponge for biosorption of hexavalent chromium[J]. International Journal of Environmental Science and Technology, 2014, 11(7):1927-1938
Calabrese E J. Overcompensation stimulation:A mechanism for hormetic effects[J]. Critical Reviews in Toxicology, 2001, 31(4-5):425-470
Wang Z, Xia T, Liu S J. Mechanisms of nanosilver-induced toxicological effects:More attention should be paid to its sublethal effects[J]. Nanoscale, 2015, 7(17):7470-7481
Nel A E, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nature Materials, 2009, 8(7):543-557
Xie X L, Sun T C, Xue J Z, et al. Targeted antibacterial therapy:Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications (Adv. Funct. Mater. 17/2020)[J]. Advanced Functional Materials, 2020, 30(17):2070106
Bae S, Hwang Y S, Lee Y J, et al. Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles[J]. Environmental Health and Toxicology, 2013, 28:e2013006
Huang Z Z, Chen G Q, Zeng G M, et al. Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2017, 321:37-46
Akaighe N, Maccuspie R I, Navarro D A, et al. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions[J]. Environmental Science & Technology, 2011, 45(9):3895-3901