沙乃庆, 李艳红. 氟喹诺酮类抗生素水污染现状及去除技术研究进展[J]. 工业水处理, 2021, 41(5):22-28 Sha N Q, Li Y H. Current situation of water pollution and research progress treatment technology of fluoroquinolone antibiotics[J]. Industrial Water Treatment, 2021, 41(5):22-28(in Chinese)
Xiao C Q, Han Y, Liu Y, et al. Relationship between fluoroquinolone structure and neurotoxicity revealed by zebrafish neurobehavior[J]. Chemical Research in Toxicology, 2018, 31(4):238-250
Dalla Bona M, Lizzi F, Borgato A, et al. Increasing toxicity of enrofloxacin over four generations of Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2016, 132:397-402
Klein E Y, van Boeckel T P, Martinez E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15):E3463-E3470
Manzetti S, Ghisi R. The environmental release and fate of antibiotics[J]. Marine Pollution Bulletin, 2014, 79(1-2):7-15
孙秋根, 王智源, 董建玮, 等. 太湖流域河网4种典型抗生素的时空分布和风险评价[J]. 环境科学学报, 2018, 38(11):4400-4410 Sun Q G, Wang Z Y, Dong J W, et al. Spatial-temporal distribution and risk evaluation of four typical antibiotics in river networks of Taihu Lake Basin[J]. Acta Scientiae Circumstantiae, 2018, 38(11):4400-4410(in Chinese)
Valdés M E, Santos L H M L M, Rodríguez Castro M C, et al. Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA)[J]. Environmental Pollution, 2021, 269:116133
付雨, 剧泽佳, 付耀萱, 等. 白洋淀优势水生植物中喹诺酮类抗生素的生物富集特征及其与环境因子相关性研究[J]. 环境科学学报, 2021, 41(9):3620-3630 Fu Y, Ju Z J, Fu Y X, et al. The bioaccumulation of quinolones (QNs) in the dominant macrophytes and the correlation with environmental factors in Baiyangdian Lake[J]. Acta Scientiae Circumstantiae, 2021, 41(9):3620-3630(in Chinese)
Wagil M, Kumirska J, Stolte S, et al. Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland[J]. The Science of the Total Environment, 2014, 493:1006-1013
Grenni P, Ancona V, Caracciolo A. Ecological effects of antibiotics on natural ecosystems:A review[J]. Microchemical Journal, 2018, 136:25-39
Yang C, Song G, Lim W. A review of the toxicity in fish exposed to antibiotics[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 237:108840
Xi J L, Liu J, He S J, et al. Effects of norfloxacin exposure on neurodevelopment of zebrafish (Danio rerio) embryos[J]. Neurotoxicology, 2019, 72:85-94
Liang X M, Wang F, Li K, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio):Developmental toxicity, oxidative stress and immunotoxicity[J]. Fish & Shellfish Immunology, 2020, 96:262-269
Wang G X, Zhang Q, Li J L, et al. Combined effects of erythromycin and enrofloxacin on antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 212:138-145
Du J, Zhao H X, Liu S S, et al. Antibiotics in the coastal water of the South Yellow Sea in China:Occurrence, distribution and ecological risks[J]. The Science of the Total Environment, 2017, 595:521-527
Liu K, Yin X F, Zhang D L, et al. Distribution, sources, and ecological risk assessment of quinotone antibiotics in the surface sediments from Jiaozhou Bay wetland, China[J]. Marine Pollution Bulletin, 2018, 129(2):859-865
中华人民共和国生态环境部. 化学物质环境与健康危害评估技术导则(试行)[S]. 北京:中华人民共和国生态环境部, 2020
He S W, Sun Q Y, Liu Y, et al. Acute toxicity, bioaccumulation, and bioreduction of two antibiotics, norfloxacin and ofloxacin, in the snail Bellamya aeruginosa[J]. Water, Air, & Soil Pollution, 2020, 231(3):96
Ma T W, Wang M, Gong S J, et al. Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(1):153-165
Li Q, Wang M, Duan L, et al. Multiple biomarker responses in caged benthic gastropods Bellamya aeruginosa after in situ exposure to Taihu Lake in China[J]. Environmental Sciences Europe, 2018, 30(1):34
Ma T W. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity[J]. Journal of Environmental Sciences, 2010, 22(2):304-313
徐怡璐, 吴彬, 石倩倩, 等. 锰铅镉复合暴露对人神经母细胞瘤细胞的毒性作用[J]. 环境与健康杂志, 2019, 36(8):679-684 Xu Y L, Wu B, Shi Q Q, et al. Toxicity of co-exposure to manganese, lead and cadmium to SK-N-SH cells[J]. Journal of Environment and Health, 2019, 36(8):679-684(in Chinese)
汪皓琦, 董玉瑛, 汪灵伟. 3种新型污染物对发光菌的毒性作用研究[J]. 生态毒理学报, 2018, 13(4):179-184 Wang H Q, Dong Y Y, Wang L W. Study on the toxicity of three emerging pollutants to Photobacterium phosphoreum[J]. Asian Journal of Ecotoxicology, 2018, 13(4):179-184(in Chinese)
Peltzer P M, Lajmanovich R C, Attademo A M, et al. Ecotoxicity of veterinary enrofloxacin and ciprofloxacin antibiotics on anuran amphibian larvae[J]. Environmental Toxicology and Pharmacology, 2017, 51:114-123
Shen R, Yu Y C, Lan R, et al. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish[J]. Environmental Pollution, 2019, 254(Pt B):112861
中华人民共和国国家环境保护总局. 新化学物质危害评估导则:HJ/T 154-2004[S]. 北京:中华人民共和国国家环境保护总局, 2004
Riaz L, Mahmood T, Coyne M S, et al. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics[J]. Chemosphere, 2017, 177:250-257
Magdaleno A, Saenz M E, Juarez A B, et al. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata[J]. Ecotoxicology and Environmental Safety, 2015, 113:72-78
Jia J, Zhu F, Ma X H, et al. Mechanisms of drug combinations:Interaction and network perspectives[J]. Nature Reviews Drug Discovery, 2009, 8(2):111-128
Xu X Q, Lu Q, Yang Y, et al. A proposed "steric-like effect" for the slowdown of enrofloxacin antibiotic metabolism by ciprofloxacin, and its mechanism[J]. Chemosphere, 2021, 284:131347
Han Y, Ma Y Y, Yao S C, et al. In vivo and in silico evaluations of survival and cardiac developmental toxicity of quinolone antibiotics in zebrafish embryos (Danio rerio)[J]. Environmental Pollution, 2021, 277:116779
Kergaravat S V, Gagneten A M, Hernandez S R. Development of an electrochemical method for the detection of quinolones:Application to cladoceran ecotoxicity studies[J]. Microchemical Journal, 2018, 141:279-286
van Doorslaer X, Dewulf J, van Langenhove H, et al. Fluoroquinolone antibiotics:An emerging class of environmental micropollutants[J]. The Science of the Total Environment, 2014, 500-501:250-269