Khan A, Khan S, Khan M A, et al. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk:A review[J]. Environmental Science and Pollution Research, 2015, 22(18):13772-13799
Zeng P, Guo Z, Xiao X, et al. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 189:109973
Lai J, Liu Z, Luo X. A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium[J]. Journal of Hazardous Materials, 2020, 386:121437
Wei S, Zhou Q, Wang X, et al. A newly-discovered Cd-hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1):33-38
Peng K J, Luo C L, Chen Y H, et al. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(2):260-264
唐秀梅, 龚春风, 周主贵, 等. 镉对龙葵(Solanum nigrum L.)根系形态及部分生理指标的影响[J]. 生态环境, 2008, 17(4):1462-1465 Tang X M, Gong C F, Zhou Z G, et al. Effects of cadmium on root morphology and some physiological indexes of Solanum nigrum L.[J]. Ecology and Environment, 2008, 17(4):1462-1465(in Chinese)
王涛, 郭智, 奥岩松. 镉对龙葵幼苗生长的影响及镉富集特性研究[J]. 上海交通大学学报:农业科学版, 2009, 27(3):200-205 Wang T, Guo Z, Ao Y S. Effects of Cd stress on growth and Cd-accumulation of Solanum nigrum L. seedlings[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2009, 27(3):200-205(in Chinese)
Patra J, Lenka M, Panda B B. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc[J]. New Phytologist, 1994, 128(1):165-171
罗琼, 葛青, 刘小京, 等. 重金属超富集植物龙葵对镉响应的蛋白组学分析[J]. 中国生态农业学报, 2015, 23(11):85-92 Luo Q, Ge Q, Liu X J, et al. Proteomic analysis of Cd-responsive proteins in hyper-accumulator Solanum nigrum[J]. Chinese Journal of Eco-Agriculture, 2015, 23(11):85-92(in Chinese)
杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002, 8(1):8-15 Yang X E, Long X X, Ni W Z. Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants[J]. Plant Nutrition and Fertilizer Science, 2002, 8(1):8-15(in Chinese)
Gramss G, Voigt K D, Bergmann H. Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uraniummine-dump soil[J]. Journal of Plant Nutrition Soil Science, 2004, 167:417-427
Krishnamurti G S R, Huang P M, Van Rees K C J, et al. Speciation of particulate-bound cadmium of soils and its bioavailability[J]. The Analyst, 1995, 120:659-665
Rizwan M, Meunier J D, Miche H, et al. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination[J]. Journal of Hazardous Materials, 2012, 209:326-334
Bao T, Sun T, Sun L. Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and nonhyperaccumulator Solanum lycopersicum L.[J]. African Journal of Biotechnology, 2011, 10(75):17180-17185
孙月美. 土壤镉污染的龙葵、沸石修复及油葵响应研究[D]. 保定:河北农业大学, 2016:39-43 Sun Y M. Research on remediation by Solanum nigrum and zeolite, and response of oil sunflower of Cd contaminated soil[D]. Baoding:Hebei Agricultural University, 2016:39 -43(in Chinese)
Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana[J]. New Phytologist, 2009, 181(1):71-78
Xu J, Sun J, Du L, et al. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum[J]. New Phytologist, 2012, 196(1):110-124
张腾. 转IRT1基因龙葵毛状根体系的建立及其对镉胁迫响应的初步探讨[D]. 北京:北京交通大学, 2016:52-57 Zhang T. Establishment of IRT1 transgenic hairy roots line of Solanum nigrum L. and preliminary study on its response to cadmium stress[D]. Beijing:Beijing Jiaotong University, 2016 :52-57(in Chinese)
Seregin I V, Kozhevnikova A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel and strontium[J]. Russian Journal of Plant Physiology, 2008, 55(1):l-22
仇硕, 张敏, 孙延东, 等. 植物重金属镉(Cd2+)、吸收、运输、积累及耐性机理研究进展[J]. 西北植物学报, 2006, 26(12):2615-2622 Qiu S, Zhang M, Sun Y D, et al. Research progress on plant heavy metal cadmium (Cd2+), absorption, transportation, accumulation and tolerance mechanism[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12):2615-2622(in Chinese)
李志贤, 冯涛, 陈章, 等. 镉胁迫对龙葵镉的吸收积累及生理响应的影响[J]. 水土保持学报, 2017, 31(5):331-336 Li Z X, Feng T, Chen Z, et al. Effects of different levels Cd stress on Cd uptake and physiological response of Solanum sigrum L.[J]. Journal of Soil and Water Conservation, 2017, 31(5):331-336(in Chinese)
张玉秀, 柴团耀. 植物重金属调节基因的分离和功能[M]. 北京:中国农业出版社, 2006:33 Zhang Y X, Chai T Y. Isolation and Function of Heavy Metal Responsive Gene in Plant[M]. Beijing:China Agricultural Press, 2006:33(in Chinese)
孙正国. 龙葵对镉污染土壤的响应及其修复效应研究[J]. 江苏农业科学, 2015, 43(10):397-401
Mendoza-Cozatl D G, Moreno-Sanchez R. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants[J]. Journal of Theoretical Biology, 2006, 238(4):919-936
Xu J, Yin H, Wang W, et al. Identification of Cd-responsive genes of Solanum nigrum seedlings through differential display[J]. Plant Molecular Biology Reporter, 2009, 27(4):563-569
张君诚, 孟玉环, 宋育红, 等. 植物Ca2+-CaM信号系统及其调控研究进展[J]. 重庆师范大学学报:自然科学版, 2005, 22(4):49-52 Zhang J C, Meng Y H, Song Y H, et al. Research developments of Ca2+-CaM signal system and its regulation in plant[J]. Journal of Chongqing Normal University:Natural Science Edition, 2005, 22(4):49-52(in Chinese)
Belcastro M, Marino T, Russo N, et al. The role of glutathione in cadmium ion detoxification:Coordination modes and binding properties-A density functional study[J]. Journal of Inorganic Biochemistry, 2009, 103(1):50-57
Mendoza-Cozatl D G, Jobe T O, Hauser F, et al. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic[J]. Current Opinion in Plant Biology, 2011, 14(5):554-562
Huang J, Zhang Y, Peng J S, et al. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis[J]. Plant Physiology, 2012, 158(4):1779-1788
Zhu X F, Wang Z W, Dong F, et al. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J]. Journal of Hazardous Materials, 2013, 263:398-403
王姗姗. 龙葵对镉富集的主要特征研究[D]. 北京:中国科学院研究生院, 2013:58-64 Wang S S. Main characteristics of Solanum nigrum L. accumulating cadmium[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2013:58 -64(in Chinese)
Wei S, Zeng X, Wang S, et al. Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability, subcellular distribution, and chemical form[J]. Journal of Soils and Sediments, 2014, 14(3):558-566
AbdElgawad H, Zinta G, Hamed B A, et al. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environmental Pollution, 2020, 258:113705
Shahkolaie S S, Baranimotlagh M, Dordipour E, et al. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil[J]. South African Journal of Botany, 2020, 128:132-140
Wang J, Wang H, Chen J, et al. Xylem development, cadmium bioconcentration, and antioxidant defense in Populus×euramericana stems under combined conditions of nitrogen and cadmium[J]. Environmental and Experimental Botany, 2019, 164:1-9
Rehman M Z U, Rizwan M, Ali S, et al. Remediation of heavy metal contaminated soils by using Solanum nigrum:A review[J]. Ecotoxicology and Environmental Safety, 2017, 143:236-248
Khan A R, Ullah I, Khan A L, et al. Phytostabilization and physicochemical responses of Korean ecotype Solanum nigrum L. to cadmium contamination[J]. Water, Air, & Soil Pollution, 2014, 225(10):2147
Xu J, Zhu Y, Ge Q, et al. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress[J]. New Phytologist, 2012, 196(1):125-138
Sun R L, Zhou Q X, Sun F H, et al. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L.[J]. Environmental and Experimental Botany, 2007, 60(3):468-476
Fidalgo F, Freitas R, Ferreira R, et al. Solanum nigrum L. antioxidant defense system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress[J]. Environmental and Experimental Botany, 2011, 72(2):312-319
Thiel J, Rolletschek H, Friedel S, et al. Seed-specific elevation of non-symbiotic hemoglobin AtHb1:Beneficial effects and underlying molecular networks in Arabidopsis thaliana[J]. BMC Plant Biology, 2011, 11(1):48
Rai P K, Kim K H, Lee S S, et al. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes[J]. Science of the Total Environment, 2020, 705:135858
Tao Q, Zhao J, Li J, et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 383:121177
Hussain A, Amna, Kamran M A, et al. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L.[J]. Environmental and Experimental Botany, 2019, 159:23-33
Rai P K. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes[J]. Critical Reviews in Environmental Science and Technology, 2009, 39(9):697-753
Sun R, Zhou Q, Jin C. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator[J]. Plant and Soil, 2006, 285(1-2):125-134
UdDin I, Bano A, Masood S. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation[J]. Ecotoxicology and Environmental Safety, 2015, 113:271-278
Al Khateeb W, Al-Qwasemeh H. Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of Solanum nigrum L., a crop wild relative for tomato; comparative study[J]. Physiology and Molecular Biology of Plants, 2014, 20(1):31-39
Xu J, Yin H X, Li X. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L.[J]. Plant Cell Reports, 2009, 28(2):325-333
汪敦飞, 郑新宇, 肖清铁, 等. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响[J]. 应用生态学报, 2019, 30(8):2767-2774 Wang D F, Zheng X Y, Xiao Q T, et al. Effects of Pseudomonas aeruginosa on root activity and leaf physiological characteristics in rice (Oryza sativa L.) seedling under cadmium stress[J]. Chinese Journal of Applied Ecology, 2019, 30(8):2767-2774(in Chinese)
铁得祥, 胡红玲, 陈洪, 等. 桢楠幼树生长及抗性生理对镉胁迫的响应[J]. 西北农林科技大学学报:自然科学版, 2019, 47(12):104-114 Tie D X, Hu H L, Chen H, et al. Responses of growth and resistant physiology of Phoebe zhennan saplings to cadmium stress[J]. Journal of Northwest A&F University:Natural Science Edition, 2019, 47(12):104-114(in Chinese)
郭智, 原海燕, 陈留根, 等. 镉胁迫对龙葵幼苗氮代谢及其相关酶活性的影响[J]. 生态环境学报, 2010, 19(5):1087-1091 Guo Z, Yuan H Y, Chen L G, et al. Effect of cadmium on nitrogen metabolism and relative enzymes activity in Solanum nigrum L. seedling[J]. Ecology and Environmental Sciences, 2010, 19(5):1087-1091(in Chinese)
潘瑞炽. 植物生理学[M]. 第5版. 北京:高等教育出版社, 2004:274 Pan R C. Plant Physiology[M]. Fifth Edition. Beijing:Higher Education Press, 2004:274(in Chinese)
Gao Y, Zhou P, Mao L, et al. Phytoextraction of cadmium and physiological changes in Solanum nigrumas as novel cadmium hyperaccumulator[J]. Russian Journal of Plant Physiology, 2010, 57(4):501-508
唐星林, 金洪平, 周晨, 等. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响[J]. 中南林业科技大学学报, 2019, 39(9):102-108 Tang X L, Jin H P, Zhou C, et al. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum[J]. Journal of Central South University of Forestry & Technology, 2019, 39(9):102-108(in Chinese)
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants[J]. Biochimie, 2006, 88(11):1707-1719
Tang L, Yao A, Yuan M, et al. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium[J]. Chemosphere, 2016, 164:190-200
Yang S, Zu Y, Li B, et al. Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress[J]. Chemosphere, 2019, 220:69-76
Boussama N, Ouariti O, Suzuki A, et al. Cd-Stress on nitrogen assimilation[J]. Journal of Plant Physiology, 1999, 155(3):310-317
李燕, 路艳艳. 重金属对超富集植物生态毒理和氮代谢影响机制研究进展[J]. 吉林农业:学术版, 2010(10):45, 48
柴小清, 印莉萍, 刘祥林, 等. 不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响[J]. 植物学报, 1996, 38(10):803-808 Chai X Q, Yin L P, Liu X L, et al. Influence of different concentrations of NO3- and NH4+ on the activity of glutamine synthetase and other relevant enzymes of nitrogen metabolism in wheat roots[J]. Acta Botanica Sinica, 1996, 38(10):803-808(in Chinese)
Yan Y Y, Yang B, Lan X Y, et al. Cadmium accumulation capacity and resistance strategies of a cadmium-hypertolerant fern-Microsorum fortunei[J]. Science of the Total Environment, 2019, 649:1209-1223
陈镔, 谭淑端, 董方旭, 等. 重金属对植物的毒害及植物对其毒害的解毒机制[J]. 江苏农业科学, 2019, 47(4):34-38 Chen B, Tan S D, Dong F X, et al. Toxic effects of heavy metals on plants and detoxification mechanism of plants[J]. Jiangsu Agricultural Sciences, 2019, 47(4):34-38(in Chinese)
MacNair M R. Tolerance of Higher Plants to Toxic Materials[M]//Bishop J M, Cook L M. (ed.) Genetic Consequences of Man-made Change. London & New York:Academic Press, 1981:177-208
Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149:78-90