Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids:A review of monitoring and toxicological findings[J]. Toxicological Sciences, 2007, 99(2):366-394
Giesy J P, Kannan K. Perfluorochemical surfactants in the environment[J]. Environmental Science & Technology, 2002, 36(7):146A-152A
Wang Z, DeWitt J C, Higgins C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)[J]. Environmental Science & Technology, 2017, 51(5):2508-2518
Buck R C, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4):513-541
盛南, 潘奕陶, 戴家银. 新型全氟及多氟烷基化合物生态毒理研究进展[J]. 安徽大学学报:自然科学版, 2018, 42(6):3-13 Sheng N, Pan Y T, Dai J Y, et al. Current research status of several emerging per- and polyfluoroalkyl substances (PFASs)[J]. Journal of Anhui University:Natural Science Edition, 2018, 42(6):3-13(in Chinese)
周秀鹃, 盛南, 王建设. 全氟和多氟化合物替代品的研究进展[J]. 生态毒理学报, 2017, 12(3):3-12 Zhou X J, Sheng N, Wang J S, et al. The current research status of several kinds of fluorinated alternatives[J]. Asian Journal of Ecotoxicology, 2017, 12(3):3-12(in Chinese)
DeWitt J C. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances[M]. New York:Humana Press, 2015:451-477
Gordon S C. Toxicological evaluation of ammonium 4,8-dioxa-3H-per-fluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing[J]. Regulatory Toxicology and Pharmacology, 2011, 59(1):64-80
江桂斌, 宋茂勇. 典型污染物的环境暴露与健康效应[M]. 北京:科学出版社, 2020:348-364 Jiang G B, Song M Y. Environmental Exposure and Health Effects[M]. Beijing:Science Press, 2020:348 -364(in Chinese)
Munoz G, Liu J, Vo Duy S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples:A review[J]. Trends in Environmental Analytical Chemistry, 2019, 23:e00066
Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment:A review of current literature[J]. Water Research, 2017, 124:482-495
张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展[J]. 生态毒理学报, 2019, 14(3):30-53 Zhang M, Lou Q T, Shao Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment[J]. Asian Journal of Ecotoxicology, 2019, 14(3):30-53(in Chinese)
Strynar M, Dagnino S, McMahen R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS)[J]. Environmental Science & Technology, 2015, 49(19):11622-11630
Heydebreck F, Tang J, Xie Z, et al. Alternative and legacy perfluoroalkyl substances:Differences between European and Chinese river/estuary systems[J]. Environmental Science & Technology, 2015, 49(14):8386-8395
Pan Y, Zhang H, Cui Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14):7621-7629
Pan Y T, Zhang H X, Cui Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid:An emerging concern[J]. Environmental Science & Technology, 2017, 51(17):9553-9560
Song X, Vestergren R, Shi Y, et al. Emissions, transport, and fate of emerging per- and polyfluoroalkyl substances from one of the major fluoropolymer manufacturing facilities in China[J]. Environmental Science & Technology, 2018, 52(17):9694-9703
Wang S, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years:Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18):10163-10170
Wang T, Vestergren R, Herzke D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese rivers[J]. Environmental Science & Technology, 2016, 50(21):11584-11592
Ruan T, Lin Y, Wang T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11):6519-6527
Wang W, Maimaiti A, Shi H, et al. Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins[J]. Chemical Engineering Journal, 2019, 364(1):132-138
Huang P J, Hwangbo M, Chen Z, et al. Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution[J]. ACS Omega, 2018, 3(12):17447-17455
Sun M, Arevalo E, Strynar M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River watershed of North Carolina[J]. Environmental Science & Technology Letters, 2016, 3(12):415-419
Cui Q, Pan Y, Zhang H, et al. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus)[J]. Environmental Science & Technology, 2018, 52(3):982-990
Gebbink W A, Bossi R, Rigét F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144:2384-2391
Thompson C M, Fitch S E, Ring C, et al. Development of an oral reference dose for the perfluorinated compound GenX[J]. Journal of Applied Toxicology, 2019, 39(9):1-16
Hogue C. The hunt is on for GenX chemicals in people:Analysis of North Carolina residents' blood for Chemours PFAS yields surprises. Chemical & Engineering News, 2019, 97
Pan Y, Zhu Y, Zheng T, et al. Novel chlorinated polyfluorinated ether sulfonates and legacy per-/polyfluoroalkyl substances:Placental transfer and relationship with serum albumin and glomerular filtration rate[J]. Environmental Science & Technology, 2017, 51(1):634-644
Shi Y, Vestergren R, Xu L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5):2396-2404
Sheng N, Cui R N, Wang J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein[J]. Archives of Toxicology, 2018, 92(1):359-369
Gannon S A, Fasano W J, Mawn M P, et al. Absorption,distribution, metabolism, excretion, and kinetics of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid ammonium salt following a single dose in rat, mouse, and cynomolgus monkey[J]. Toxicology, 2016, 340:1-9
Rushing B R, Hu Q, Franklin J N, et al. Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice[J]. Toxicological Sciences, 2017, 156(1):179-189
Haas M C. A 28-day oral (gavage) toxicity study of H-28397 in rats with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2008
Haas M C. A 28-day oral (gavage) toxicity study of H-28397 in mice with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2008
MacKenzie S A. H-28548:Subchronic toxicity 90-day gavage study in mice[R]. Newark, DE:E.I. du Pont de Nemours and Company, Dupont Haskell Global Centers for Health & Environmental Sciences, 2010
Haas M C. A 90-day oral (gavage) toxicity study of H-28548 in rats with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2009
Guo H, Wang J, Yao J, et al. Comparative hepatotoxicity of novel PFOA alternatives (perfluoropolyether carboxylic acids) on male mice[J]. Environmental Science & Technology, 2019,53(7):3929-3937
Sheng N, Pan Y, Guo Y, et al. Hepatotoxic effects of hexafluoropropylene oxide trimer acid (HFPO-TA), a novel perfluorooctanoic acid (PFOA) alternative, on mice[J]. Environmental Science & Technology, 2018, 52(14):8005-8015
Edwards T L. An oral (gavage) reproduction/developmental toxicity screening study of H-28548 in mice (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2010
Edwards T L. An oral (gavage) prenatal developmental toxicity study of H-28548 in rats (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2010
Shi G, Cui Q, Pan Y, et al. 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos[J]. Aquatic Toxicology, 2017, 185:67-75
Wang J, Shi G, Yao J, et al. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption[J]. Environment International, 2020, 134:105317