Hirai J, Kuriyama M, Ichikawa T, et al. A metagenetic approach for revealing community structure of marine planktonic copepods[J]. Molecular Ecology Resources, 2015, 15(1):68-80
Ji Y, Ashton L, Pedley S M, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding[J]. Ecology Letters, 2013, 16(10):1245-1257
Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Molecular Ecology, 2012, 21(11):2565-2573
Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Molecular Ecology, 2015, 25(4):929-942
张宛宛,谢玉为,杨江华,等. DNA宏条形码(metabarcoding)技术在浮游植物群落监测研究中的应用[J].生态毒理学报, 2017, 12(1):15-24 Zhang W W, Xie Y W, Yang J H, et al. Applications and prospects of metabarcoding in environmental monitoring of phytoplankton community[J]. Asian Journal of Ecotoxicology, 2017, 12(1):15-24(in Chinese)
李飞龙,杨江华,杨雅楠,等.环境DNA宏条形码监测水生态系统变化与健康状态[J].中国环境监测, 2018, 34(6):37-46 Li F L, Yang J H, Yang Y N, et al. Using environmental DNA metabarcoding to monitor the changes and health status of aquatic ecosystems[J]. Environmental Monitoring in China, 2018, 34(6):37-46(in Chinese)
孙晶莹,杨江华,张效伟.环境DNA (eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究[J].生态毒理学报, 2018, 13(5):79-89 Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton Cladocera species with eDNA metabarcoding technology[J]. Asian Journal of Ecotoxicology, 2018, 13(5):79-89(in Chinese)
Yang J, Zhang X, Xie Y, et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen[J]. Environmental Science & Technology, 2017, 51(5):3057-3064
Yang J, Zhang X, Xie Y, et al. Zooplankton community profiling in a eutrophic freshwater ecosystem-Lake Tai Basin by DNA metabarcoding[J]. Scientific Reports, 2017, 7(1):1773
Lindeque P K, Parry H E, Harmer R A, et al. Next generation sequencing reveals the hidden diversity of zooplankton assemblages[J]. PLoS One, 2013, 8(11):e81327
Tang C Q, Leasi F, Obertegger U, et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16208-16212
Hebert P D, Ratnasingham S, Dewaard J R. Barcoding animal life:Cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(supply1):S96-S99
Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society B-Biological Sciences, 2003, 270(1512):313-321
Ratnasingham S, Hebert P D N. BOLD:The barcode of life data system[J]. Molecular Ecology Notes, 2007, 7(3):355-364
Chain F J J, Brown E A, Macisaac H J, et al. Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports[J]. Diversity and Distributions, 2016, 22(5):493-504
Clarke L J, Soubrier J, Weyrich L S, et al. Environmental metabarcodes for insects:in silico PCR reveals potential for taxonomic bias[J]. Molecular Ecology Resources, 2014, 14(6):1160-1170
Piñol J, Mir G, Gomez-Polo P, et al. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods[J]. Molecular Ecology Resources, 2015, 15(4):819-830
Deagle B E, Jarman S N, Coissac E, et al. DNA metabarcoding and the cytochrome c oxidase subunit Ι marker:Not a perfect match[J]. Biology Letters, 2014, 10(9):399
Epp L S, Boessenkool S, Bellemain E P, et al. New environmental metabarcodes for analysing soil DNA:Potential for studying past and present ecosystems[J]. Molecular Ecology, 2012, 21(8):1821-1833
Mohrbeck I, Raupach M J, Arbizu P M, et al. Highthroughput sequencing-The key to rapid biodiversity assessment of marine Metazoa[J]. PLoS One, 2015, 10(10):e0140342
Pearman J K, Irigoien X. Zooplankton diversity across three Red Sea reefs using pyrosequencing[J]. Frontiers in Marine Science, 2014, 1:27
Sun C, Zhao Y L, Li H, et al. Unreliable quantitation of species abundance based on high-throughput sequencing data of zooplankton communities[J]. Aquatic Biology, 2015, 24(1):9-15
Zhan A, Bailey S A, Heath D D, et al. Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities[J]. Molecular Ecology Resources, 2014, 14(5):1049-1059
Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity[J]. Proceedings of the National Academy of Sciences, 2015, 112(7):2076-2081
Jermiin L S, Crozier R H. The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger:Sequence divergence in Hymenoptera may be associated with nucleotide content[J]. Journal of Molecular Evolution, 1994, 38(3):282-294
Carew M E, Pettigrove V J, Metzeling L, et al. Environmental monitoring using next generation sequencing:Rapid identification of macroinvertebrate bioindicator species[J]. Frontiers in Zoology, 2013, 10(1):1-15
Meusnier I, Singer G A, Landry J, et al. A universal DNA mini-barcode for biodiversity analysis[J]. BMC Genomics, 2008, 9(1):214
Hirai J, Tsuda A. Metagenetic community analysis of epipelagic planktonic copepods in the tropical and subtropical Pacific[J]. Marine Ecology Progress, 2015, 534:65-78
Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit Ι from diverse metazoan invertebrates[J]. Molecular Marine Biology & Biotechnology, 1994, 3(5):294-299
Leray M, Yang J Y, Meyer C P, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity:Application for characterizing coral reef fish gut contents[J]. Frontiers in Zoology, 2013, 10(1):34
de Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diversity in the sunlit ocean[J]. Science, 2015, 348(6237):1261605
Cock P J, Antao T, Chang J T, et al. Biopython:Freely available Python tools for computational molecular biology and bioinformatics[J]. Bioinformatics, 2009, 25(11):1422-1423
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336
Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200
Field D, Tiwari B, Booth T, et al. Open software for biologists:From famine to feast[J]. Nature Biotechnology, 2006, 24(7):801-803
Gentleman R C, Carey V J, Bates D M, et al. Bioconductor:Open software development for computational biology and bioinformatics[J]. Genome Biology, 2004, 5(10):R80
Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998
Amaral-Zettler L A, McCliment E A, Ducklow H W, et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes[J]. PLoS One, 2009, 4(7):e6372
Jarman S N, Mcinnes J C, Faux C, et al. Adélie penguin population diet monitoring by analysis of food DNA in scats[J]. PLoS One, 2013, 8(12):e82227
Clarke L J, Beard J M, Swadling K M, et al. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies[J]. Ecology & Evolution, 2017, 7(3):87383
Stefanni S, StankovićD, Borme D, et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale[J]. Scientific Reports, 2018, 8(1):12085