纪小凤, 郑娜, 王洋, 等. 中国城市土壤重金属污染研究现状及展望[J]. 土壤与作物, 2016, 5(1):42-47
Ji X F, Zheng N, Wang Y, et al. Heavy metal contamination of urban soils in China:Recent advances and prospects[J]. Soil and Crops, 2016, 5(1):42-47(in Chinese)
|
Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512:143-153
|
Teng Y, Ni S, Wang J, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing Area, China[J]. Journal of Geochemical Exploration, 2010, 104(3):118-127
|
刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21):1-7
Liu S J, Xue X, Chen G M, et al. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 2011, 27(21):1-7(in Chinese)
|
Yao X H, Min H, Lu Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42(2):120-126
|
Acosta-Martinez V, Cano A, Johnson J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices[J]. Applied Soil Ecology, 2018, 126:121-128
|
Nannipieri P, Trasar-Cepeda C, Dick R P. Soil enzyme activity:A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[J]. Biology and Fertility of Soils, 2018, 54(1):11-19
|
Hiltner L, Bakteriol Z. Vber neuere erfahrungen und probleme auf dem debiete der bodenbakteriologie unter besonderer berucksichtigung der grundungung und brache[J]. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98:59-78
|
Kuzyakov Y, Razavi B S. Rhizosphere size and shape:Temporal dynamics and spatial stationarity[J]. Soil Biology & Biochemistry, 2019, 135:343-360
|
Belnap J, Hawkes C V, Firestone M K. Boundaries in miniature:Two examples from soil[J]. BioScience, 2003, 53(8):739-749
|
Dick R P. Soil enzyme activities as indicators of soil quality[J]. Soil Science Society of America Journal, 1994, 58:107-124
|
Liu S, Razavi B S, Xu S, et al. Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms[J]. Soil Biology & Biochemistry, 2017, 112:100-109
|
Duan C, Fang L, Yang C, et al. Reveal the response of enzyme activities to heavy metals through in situ zymography[J]. Ecotoxicology and Environmental Safety, 2018, 156:106-115
|
Marschner P, Marhan S, Kandeler E, et al. Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere[J]. Soil Biology & Biochemistry, 2012, 49:174-183
|
丁巧蓓, 晁元卿, 王诗忠, 等. 根际微生物群落多样性在重金属土壤修复中的研究[J]. 华南师范大学学报:自然科学版, 2016, 48(2):1-12
Ding Q B, Chao Y Q, Wang S Z, et al. Research on function of rhizosphere microbial diversity in phytoremediation of heavy metal polluted soils[J]. Journal of South China Normal University:Natural Science Edition, 2016, 48(2):1-12(in Chinese)
|
Mapelli F, Marasco R, Fusi M, et al. The stage of soil development modulates rhizosphere effect along a high arctic desert chronosequence[J]. ISME Journal, 2018, 12(5):1188-1198
|
陈怀满, 朱永官, 董元华, 等. 环境土壤学[M]. 北京:科学出版社, 2018:72-75
|
Marschner H. Mineral nutrition in higher plants[J]. Journal of Ecology, 1986, 76(4):1250
|
Xu Z, Yu G, Zhang X, et al. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain[J]. Applied Soil Ecology, 2015, 86(86):19-29
|
Spohn M, Kuzyakov Y. Distribution of microbial and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation-coupling soil zymography with 14C imaging[J]. Soil Biology & Biochemistry, 2013, 67(3):106-113
|
Aon M, Colaneri A.Ⅱ. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3):255-270
|
Magnuson T S, Crawford D. Comparison of extracellular peroxidase and esterase deficient mutants of Streptomyces viridosporus T7A[J]. Applied and Environmental Microbiology, 1992, 58(3):1070-1072
|
Lee Y S, Nguyen X H, Naing K W, et al. Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants[J]. Indian Journal of Microbiology, 2015, 55(1):74-80
|
Spohn M, Kuzyakov Y. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-A soil zymography analysis[J]. Plant and Soil, 2014, 379(1-2):67-77
|
Giles C, Dupuy L, Boitt G, et al. Root development impacts on the distribution of phosphatase activity:Improvements in quantification using soil zymography[J]. Soil Biology & Biochemistry, 2018, 116:158-166
|
Tischer A, Sehl L, Meyer U N, et al. Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species[J]. Plant Soil, 2019, 437(1-2):215-239
|
Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. The Plant Journal, 2001, 25(6):641-649
|
Sanchez-Hernandez J C, Del Pino J N, Capowiez Y, et al. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms[J]. Science of the Total Environment, 2018, 612:1407-1416
|
Kooij P W, Pullens J W, Boomsma J J, et al. Ant mediated redistribution of a xyloglucanase enzyme in fungus gardens of Acromyrmex echinatior[J]. BMC Microbiology, 2016, 16(1):81-89
|
Rudolph N, Voss S, Moradi A B, et al. Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant and Soil, 2013, 369(1-2):669-680
|
Shahsavari F, Khoshgoftarmanesh A H, Mirmohammady Maibody S A M, et al. The role of root plasma membrane ATPase and rhizosphere acidification in zinc uptake by two different Zn-deficiency-tolerant wheat cultivars in response to zinc and histidine availability[J]. Archives of Agronomy and Soil Science, 2019, 65(12):1646-1658
|
Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biology & Biochemistry, 2013, 58:216-234
|
Steinweg J M, Dukes J S, Wallenstein M D. Modeling the effects of temperature and moisture on soil enzyme activity:Linking laboratory assays to continuous field data[J]. Soil Biology & Biochemistry, 2012, 55:85-92
|
Ge T, Wei X, Razavi B S, et al. Stability and dynamics of enzyme activity patterns in the rice rhizosphere:Effects of plant growth and temperature[J]. Soil Biology & Biochemistry, 2017, 113:108-115
|
Razavi B S, Hoang D T T, Blagodatskaya E, et al. Mapping the footprint of nematodes in the rhizosphere:Cluster root formation and spatial distribution of enzyme activities[J]. Soil Biology & Biochemistry, 2017, 115:213-220
|
Wei X, Hu Y, Razavi B S, et al. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization[J]. Soil Biology & Biochemistry, 2019, 131:62-70
|
Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology & Biochemistry, 2005, 37(5):937-944
|
Zhang Y, Sun C, Chen Z, et al. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years[J]. Geoderma, 2019, 353:382-390
|
杨良静, 何俊瑜, 任艳芳, 等. Cd胁迫对水稻根际土壤酶活和微生物的影响[J]. 贵州农业科学, 2009, 37(3):85-88
Yang L J, He J Y, Ren Y F, et al. Effects of cadmium stress on microbes and enzyme activity in rice rhizosphere soil[J]. Agricultural Science in Guizhou, 2009, 37(3):85-88(in Chinese)
|
邓代莉, 石清清, 薛圣炀, 等. 外源铅污染对紫色土中微生物酶活性的影响研究[J]. 环境污染与防治, 2018, 40(10):1095-1100
Deng D L, Shi Q Q, Xue S Y, et al. Effects of exogenous heavy metal Pb on microbial enzyme activity in purple soil[J]. Environmental Pollution and Prevention, 2018, 40(10):1095-1100(in Chinese)
|
翁娜, 韩潇. 重金属污染对土壤酶活性影响的研究进展[J]. 农业开发与装备, 2016(10):34-35 Weng N, Han X. Research progress on the effect of heavy metal pollution on soil enzyme activity[J]. Agricultural Development and Equipment, 2016
(10):34-35(in Chinese)
|
Chaperon S, Sauvé S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils[J]. Soil Biology & Biochemistry, 2007, 39(9):2329-2338
|
Könemann W H, Pieters M N. Confusion of concepts in mixture toxicology[J]. Food and Chemical Toxicology, 1996, 34(11-12):1025-1031
|
Dudka S, Piotrowska M, Chlopecka A. Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants[J]. Water, Air, Soil Pollution, 1994, 76(3-4):333-341
|
任安芝, 高玉葆. 铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J]. 生态学杂志, 2000, 19(1):19-22
Ren A Z, Gao Y B. Effects of single and combinative pollutions of lead, cadmium and chromium on the germination of Brassica chinensis L.[J]. Journal of Ecology, 2000, 19(1):19-22(in Chinese)
|
Bielińska E J, Kołodziej B, Turgut K, et al. The effect of common dandelion (Taraxacum officinale Web.) rhizosphere on heavy metal content and enzymatic activity of soil[J]. Acta Horticulturae, 2009, 826(826):245-250
|
贾夏, 董岁明, 周春娟. 低含量Pb对Cd处理下冬小麦根际土壤氧化还原酶活性、BIF及C/N的影响[J]. 应用与环境生物学报, 2012, 18(6):917-923
Jia X, Dong S M, Zhou C J. Effects of low doses of Pb on rhizosphere soil oxidoreductase activities, BIF, and C:N ratio of winter wheat seedlings under Cd[J]. Journal of Applied and Environmental Biology, 2012, 18(6):917-923(in Chinese)
|
Kieloaho A J, Pihlatie M, Carrasco M D, et al. Stimulation of soil organic nitrogen pool:The effect of plant and soil organic matter degrading enzymes[J]. Soil Biology & Biochemistry, 2016, 96:97-106
|
Dominguez J J A, Bacosa H P, Chien M F, et al. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum×drummondii)[J]. Chemosphere, 2019, 234:789-795
|
Hou Y, Liu X, Zhang X, et al. Effects of key components of S. triqueter root exudates on fractions and bioavailability of pyrene-lead co-contaminated soils[J]. International Journal of Environmental Science Technology, 2016, 13(3):1-10
|
Gao M, Zhang Z, Song Z. Effects of di-n-butyl phthalate on rhizosphere and non-rhizosphere soil microbial communities at different growing stages of wheat[J]. Ecotoxicology and Environmental Safety, 2019, 174:658-666
|
石清清, 邓代莉, 颜椿, 等. 纳米金属氧化物对土壤酶活性的影响研究进展[J]. 生态毒理学报, 2018, 13(2):50-59
Shi Q Q, Deng D L, Yan C, et al. Review on effects of engineered nano-metal oxide particles on soil enzyme[J]. Asian Journal of Ecotoxicology, 2018, 13(2):50-59(in Chinese)
|
You T, Liu D, Chen J, et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types[J]. Journal of Soils Sediments, 2018, 18(1):211-221
|
Raliya R, Tarafdar J C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.)[J]. Agricultural Research, 2013, 2(1):48-57
|
Sillen W M A, Thijs S, Abbamondi G R, et al. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere[J]. Soil Biology & Biochemistry, 2015, 91:14-22
|
Wang Z, Tian H, Tan X, et al. Long-term As contamination alters soil enzyme functional stability in response to additional heat disturbance[J]. Chemosphere, 2019, 229:471-480
|
尹大川, 邓勋, 宋小双, 等. Cd胁迫下外生菌根菌对樟子松生理指标和根际土壤酶的影响[J]. 生态学杂志, 2017, 36(11):3072-3078
Yin D C, Deng X, Song X S, et al. Effects of ectomycorrhizal fungi on physiological indexes of Pinus sylvestris var. mongolica seedlings and soil enzyme activities under cadmium stress[J]. Journal of Ecology, 2017, 36(11):3072-3078(in Chinese)
|
黄冬芬, 黄耿磊, 刘国道. 重金属Cd处理对柱花草根际土壤酶活性的影响[J]. 热带作物学报, 2011, 32(4):603-607
Huang D F, Huang G L, Liu G D. Effects of cadmium on the soil enzyme activity of Stylosanthes at the rhizoshpere zones[J]. Journal of Tropical Crops, 2011, 32(4):603-607(in Chinese)
|
El-Sonbaty S M, El-Hadedy D E. Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters[J]. Environmental Science and Pollution Research, 2015, 22:3400-3407
|
Jadia C D, Fulekar M H. Phytoremediation of heavy metals:Recent techniques[J]. African Journal of Biotechnology, 2009, 8(6):921-928
|
Stone L F. Physical, chemical, and biological changes in the rhizosphere and nutrient availability[J]. Journal of Plant Nutrition, 2006, 29(7):1327-1356
|
White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine[J]. New Phytologist, 2009, 182(1):49-84
|
Jaillard B, Plassard C, Hinsinger P. Measurements of H+ Fluxes and Concentrations in the Rhizosphere[M]//Rengel Z. Handbook of Soil Acidity. Perth:University of Western Australia, 2003:231-266
|