Kwiatkowski R E, Roff J C. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario Lakes[J]. Canadian Journal of Botany, 1976, 54(22):2546-2561
Leavitt P R, Findlay D L, Hall R I, et al. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification:Evidence from paleolimnology[J]. Limnology and Oceanography, 1999, 44(3part2):757-773
Ohta H, Kobayashi Y, Moriyama A, et al. Acid Stress Responsive Genes, slr0967 and sll0939, are Directly Involved in Low-pH Tolerance of Cyanobacterium synechocystis sp. PCC6803[M]//Advanced Topics in Science and Technology in China. Berlin, Heidelberg:Springer Berlin Heidelberg, 2013:659-662
Lessmann D, Fyson A, Nixdorf B. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3[J]. Hydrobiologia, 2000, 433:123-128
Raut R, Sharma S, Bajracharya R M. Biotic response to acidification of lakes-A review[J]. Kathmandu University Journal of Science, Engineering and Technology, 2012, 8(1):171-184
李伟, 杨雨玲, 董丽丽, 等. 短期酸化对新安江流域屯溪段水体浮游植物群落结构及多样性的影响[J]. 生态毒理学报, 2016, 11(6):313-322 Li W, Yang Y L, Dong L L, et al. Short-term impact of acidification on the community structure and diversity of aquatic phytoplankton in Xin'anjiang River Basin (Tunxi section)[J]. Asian Journal of Ecotoxicology, 2016, 11(6):313-322(in Chinese)
李伟, 杨雨玲, 黄松, 等. 产毒与不产毒铜绿微囊藻对模拟酸雨及紫外辐射的生理响应[J]. 生态学报, 2015, 35(23):7615-7624 Li W, Yang Y L, Huang S, et al. Physiological responses of toxigenic and non-toxigenic strains of Microcystis aeruginosa to simulated acid rain and UV radiation[J]. Acta Ecologica Sinica, 2015, 35(23):7615-7624(in Chinese)
胡长玉, 方建新, 李伟, 等. 新安江(安徽段)及其支流丰水期浮游植物功能群[J]. 生态学杂志, 2019, 38(4):1013-1021 Hu C Y, Fang J X, Li W, et al. Phytoplankton functional groups of Xin'anjiang River Basin (Anhui section) and its tributaries in flood season[J]. Chinese Journal of Ecology, 2019, 38(4):1013-1021(in Chinese)
张国庆, 杨雨玲, 唐爱国, 等. 新安江流域(屯溪段)浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志, 2020, 39(2):527-540 Zhang G Q, Yang Y L, Tang A G, et al. Phytoplankton community structure and its relationship with environmental factors in Xin'anjiang River Basin (Tunxi section)[J]. Chinese Journal of Ecology, 2020, 39(2):527-540(in Chinese)
Li W, Yang Y L, Li Z Z, et al. Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes[J]. Journal of Applied Phycology, 2017, 29(1):133-142
Harrison J W, Smith R E H. Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities[J]. Photochemical & Photobiological Sciences, 2009, 8(9):1218-1232
Litchman E, Neale P J. UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad[J]. Marine Ecology Progress Series, 2005, 300:53-62
van de Poll W H, Janknegt P J, Van Leeuwe M A, et al. Excessive irradiance and antioxidant responses of an Antarctic marine diatom exposed to iron limitation and to dynamic irradiance[J]. Journal of Photochemistry and Photobiology B:Biology, 2009, 94(1):32-37
Buma A G J, Boelen P, Jeffrey W H. UVR-induced DNA Damage in Aquatic Organisms[M]//UV Effects in Aquatic Organisms and Ecosystems. Cambridge:Royal Society of Chemistry, 2007:291-328
Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3):307-313
Dunlap W C, Rae G A, Helbling E W, et al. Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton[J]. Antarctic Journal of the United States, 1995, 30:323-326
Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J]. Limnology and Oceanography, 1976, 21(4):540-547
中国科学院中国孢子植物志委员会. 中国淡水藻志(第八卷):绿藻门:绿球藻目(上)[M]. 北京:科学出版社, 2004:30-31
Du E Z, Dong D, Zeng X, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J]. Science of the Total Environment, 2017, 605-606:764-769
Liu Z Q, Yang J Y, Zhang J E, et al. A bibliometric analysis of research on acid rain[J]. Sustainability, 2019, 11(11):3077
Ledger M E, Hildrew A G. The ecology of acidification and recovery:Changes in herbivore-algal food web linkages across a stream pH gradient[J]. Environmental Pollution, 2005, 137(1):103-118
Gao S. A decline in macro-algae species resulting in the overwhelming prevalence of Corallina species is caused by low-pH seawater induced by short-term acid rain[J]. Journal of Experimental Marine Biology and Ecology, 2016, 475:144-153
Ledger M E, Hildrew A G. Growth of an acid-tolerant stonefly on epilithic biofilms from streams of contrasting pH[J]. Freshwater Biology, 2001, 46(11):1457-1470
Vinebrooke R D, Dixit S S, Graham M D, et al. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(3):483-493
Stumm W, Morgan J J. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters[M]. John Wiley & Sons, 2012:138-140
Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3:291-315
Li W, Wang T F, Campbell D A, et al. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom[J]. Marine Environmental Research, 2020, 160:104965
Larkum A W D. Light-harvesting Systems in Algae[M]//Larkum A W D, Douglas S E, Raven J A. Photosynthesis in Algae. Dordrecht:Springer Netherlands, 2003:277-304
Gao K S, Campbell D A. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH:A review[J]. Functional Plant Biology, 2014, 41(5):449-459
Gao K S, Xu J T, Gao G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change, 2012, 2(7):519-523
Liu N N, Yuan Y J, Yi J D, et al. The effects of modified acid rain on Anabaena flos-aquae under different light levels[J]. Fundamental and Applied Limnology, 2022, 195(4):297-304
Wu H Y, Abasova L, Cheregi O, et al. D1 protein turnover is involved in protection of photosystem Ⅱ against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis[J]. Journal of Photochemistry and Photobiology B, Biology, 2011, 104(1-2):320-325
Nina Bouchard J, Campbell D A, Roy S. Effects of UV-b radiation on the d1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina)[J]. Journal of Phycology, 2005, 41(2):273-286
Wu H Y, Roy S, Alami M, et al. Photosystem Ⅱ photoinactivation, repair, and protection in marine centric diatoms[J]. Plant Physiology, 2012, 160(1):464-476
Hãder D P, Williamson C E, Wãngberg S, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochemical & Photobiological Sciences, 2015, 14(1):108-126