Plastics Europe.Plastics:The facts 2022[R/OL].(2024-01-14)[2022-10-01].https://plasticseurope.org/
Napper I E,Thompson R C.Marine Plastic Pollution:Other than Microplastic[M].New York:Academic Press,2019:425-442
Reisser J,Slat B,Noble K,et al.The vertical distribution of buoyant plastics at sea:An observational study in theNorth Atlantic Gyre[J].Biogeosciences,2015,12(4):1249-1256
Obbard R W,Sadri S,Wong Y Q,et al.Global warmingreleases microplastic legacy frozen in Arctic Sea ice[J].Earth's Future,2014,2(6):315-320
Chea J D,Yenkie K M,Stanzione J F 3rd,et al.A genericscenario analysis of end-of-life plastic management:Chemical additives[J].Journal of Hazardous Materials,2023,441:129902
Beiras R,Tato T,López-Ibáñez S.A 2-Tier standardmethod to test the toxicity of microplastics in marine water using Paracentrotus lividus and Acartia clausi larvae[J].Environmental Toxicology and Chemistry,2019,38(3):630-637
Schrank I,Trotter B,Dummert J,et al.Effects of microplastic particles and leaching additive on the life historyand morphology of Daphnia magna[J].EnvironmentalPollution (Barking,Essex:1987),2019,255(Pt 2):113233
Bringer A,le Floch S,Kerstan A,et al.Coastal ecosysteminventory with characterization and identification of plastic contamination and additives from aquaculture materials[J].Marine Pollution Bulletin,2021,167:112286
Phillips R,Whelton A J,Eckelman M J.Incorporating usephase chemical leaching and water quality testing for lifecycle toxicity assessment of cross-linked polyethylene (PEX) piping[J].Science of the Total Environment,2021,782:146374
Zimmermann L,Bartosova Z,Braun K,et al.Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions[J].Environmental Science&Technology,2021,55(17):11814-11823
Ternes T A,Joss A,Siegrist H.Peer reviewed:Scrutinizing pharmaceuticals and personal care products inwastewater treatment[J].Environmental Science&Technology,2004,38(20):392A-399A
Liu Z N,Deng M J,Wu Q H,et al.Occurrence,seasonalvariation and environmental impact of phosphorus flameretardants in a large scale wastewater treatment plant[J].Environmental Science and Pollution Research International,2019,26(36):36333-36342
Fang W D,Peng Y,Muir D,et al.A critical review of synthetic chemicals in surface waters of the US,the EUand China[J].Environment International,2019,131:104994
Christensen P R,Scheuermann A M,Loeffler K E,et al.Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds[J].Nature Chemistry,2019,11(5):442-448
Hahladakis J N,Velis C A,Weber R,et al.An overview of chemical additives present in plastics:Migration,release,fate and environmental impact during their use,disposal and recycling[J].Journal of Hazardous Materials,2018,344:179-199
Lei C.Progress on release and migration of plastic additives to ecological environment[J].Acta Ecologica Sinica,2021,41(8):3315-3324
Brossa L,MarcéR M,Borrull F,et al.Occurrence of twenty-six endocrine-disrupting compounds in environmental water samples from Catalonia,Spain[J].Environmental Toxicology and Chemistry,2005,24(2):261-267
Fries E,Grewal T,Sühring R.Persistent,mobile,and toxic plastic additives in Canada:Properties and prioritization[J].Environmental Science Processes&Impacts,2022,24(10):1945-1956
Bolívar-Subirats G,Cortina-Puig M,Lacorte S.Multiresidue method for the determination of high production volume plastic additives in river waters[J].EnvironmentalScience and Pollution Research International,2020,27(33):41314-41325
Bolívar-Subirats G,Rivetti C,Cortina-Puig M,et al.Occurrence,toxicity and risk assessment of plastic additivesin Besos River,Spain[J].Chemosphere,2021,263:128022
Schiavo S,Oliviero M,Chiavarini S,et al.Adverse effects of oxo-degradable plastic leachates in freshwater environment[J].Environmental Science and Pollution ResearchInternational,2020,27(8):8586-8595
Law K L.Plastics in the marine environment[J].AnnualReview of Marine Science,2017,9:205-229
Song J,Na J,An D,et al.Role of benzophenone-3 additive in chronic toxicity of polyethylene microplastic fragments to Daphnia magna[J].The Science of the Total Environment,2021,800:149638
Lithner D,Larsson A,Dave G.Environmental and healthhazard ranking and assessment of plastic polymers basedon chemical composition[J].The Science of the Total Environment,2011,409(18):3309-3324
Mu X Y,Huang Y,Li J,et al.New insights into themechanism of phthalate-induced developmental effects[J].Environmental Pollution,2018,241:674-683
Singh B,Sharma N.Mechanistic implications of plasticdegradation[J].Polymer Degradation and Stability,2008,93(3):561-584
Al-Odaini N A,Shim W J,Han G M,et al.Enrichment of hexabromocyclododecanes in coastal sediments near aquaculture areas and a wastewater treatment plant in a semienclosed bay in South Korea[J].The Science of the TotalEnvironment,2015,505:290-298
Hermabessiere L,Dehaut A,Paul-Pont I,et al.Occurrence and effects of plastic additives on marine environments and organisms:A review[J].Chemosphere,2017,182:781-793
Huang W,Song B,Liang J,et al.Microplastics and associated contaminants in the aquatic environment:A reviewon their ecotoxicological effects,trophic transfer,and potential impacts to human health[J].Journal of HazardousMaterials,2021,405:124187
Liu W,Zhao Y Q,Shi Z Y,et al.Ecotoxicoproteomic assessment of microplastics and plastic additives in aquaticorganisms:A review[J].Comparative Biochemistry andPhysiology Part D,Genomics&Proteomics,2020,36:100713
Gallo F,Fossi C,Weber R,et al.Marine litter plastics andmicroplastics and their toxic chemicals components:Theneed for urgent preventive measures[J].EnvironmentalSciences Europe,2018,30(1):13
Guzzetti E,Sureda A,Tejada S,et al.Microplastic in marine organism:Environmental and toxicological effects[J].Environmental Toxicology and Pharmacology,2018,64:164-171
Kwon J H,Chang S,Hong S H,et al.Microplastics as avector of hydrophobic contaminants:Importance of hydrophobic additives[J].Integrated Environmental Assessment and Management,2017,13(3):494-499
Gunaalan K,Fabbri E,Capolupo M.The hidden threat of plastic leachates:A critical review on their impacts on aquatic organisms[J].Water Research,2020,184:116170
Brandsma S H,Leonards P E,Leslie H A,et al.Tracingorganophosphorus and brominated flame retardants andplasticizers in an estuarine food web[J].The Science of the Total Environment,2015,505:22-31
Batel A,Linti F,Scherer M,et al.Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further tozebrafish via a trophic food web experiment:CYP1A induction and visual tracking of persistent organic pollutants[J].Environmental Toxicology and Chemistry,2016,35(7):1656-1666
Di Renzo L,Mascilongo G,Berti M,et al.Potential impact of microplastics and additives on the health status of loggerhead turtles (Caretta caretta) stranded along theCentral Adriatic Coast[J].Water,Air,&Soil Pollution,2021,232(3):98
Eulaers I,Jaspers V L B,Halley D J,et al.Brominatedand phosphorus flame retardants in White-tailed EagleHaliaeetus albicilla nestlings:Bioaccumulation and associations with dietary proxies (δ13 C,δ15 N and δ34 S)[J].TheScience of the Total Environment,2014,478:48-57
Demirtepe H,Melymuk L,Codling G,et al.Targeted andsuspect screening of plasticizers in house dust to assesscumulative human exposure risk[J].The Science of theTotal Environment,2021,781:146667
Cox K D,Covernton G A,Davies H L,et al.Human consumption of microplastics[J].Environmental Science&Technology,2019,53(12):7068-7074
Akoueson F,Paul-Pont I,Tallec K,et al.Additives in polypropylene and polylactic acid food packaging:Chemicalanalysis and bioassays provide complementary tools forrisk assessment[J].The Science of the Total Environment,2023,857(Pt 2):159318
Fan P,Yu H,Xi B D,et al.A review on the occurrenceand influence of biodegradable microplastics in soil ecosystems:Are biodegradable plastics substitute or threat?[J].Environment International,2022,163:107244
Zimmermann L,Dombrowski A,Völker C,et al.Are bioplastics and plant-based materials safer than conventionalplastics?in vitro toxicity and chemical composition[J].Environment International,2020,145:106066
Kühn S,Booth A M,Sørensen L,et al.Transfer of additive chemicals from marine plastic debris to the stomachoil of northern fulmars[J].Frontiers in EnvironmentalScience,2020,8:138
Silviya E K,Varma S,Unnikrishnan G,et al.Compounding and Mixing of Polymers[M]//Sabu T,Yang W M.Advances in Polymer Processing:From Macro to NanoScales.Woodhead,2009:71-105
United States Environmental Protection Agency (USEPA).Use of additive in plastic compounding:Genericscenario for estimating occupational exposures and environmental releases (Draft)[R].Washington DC:US EPA,2014
Groh K J,Backhaus T,Carney-Almroth B,et al.Overview of known plastic packaging-associated chemicalsand their hazards[J].The Science of the Total Environment,2019,651(Pt 2):3253-3268
Ügdüler S,van Geem K M,Roosen M,et al.Challengesand opportunities of solvent-based additive extractionmethods for plastic recycling[J].Waste Management,2020,104:148-182
Carmen S.Microbial capability for the degradation of chemical additives present in petroleum-based plasticproducts:A review on current status and perspectives[J].Journal of Hazardous Materials,2021,402:123534
Guo J,Zhang J.The application and development of additives in plastic packaging material[J].China Plastics Industry,2010,38(5):8-11
Bridson J H,Gaugler E C,Smith D A,et al.Leaching andextraction of additives from plastic pollution to inform environmental risk:A multidisciplinary review of analyticalapproaches[J].Journal of Hazardous Materials,2021,414:125571
Cramer G M,Ford R A,Hall R L.Estimation of toxichazard:A decision tree approach[J].Food and CosmeticsToxicology,1978,16(3):255-276
Reingruber E,Himmelsbach M,Sauer C,et al.Identification of degradation products of antioxidants in polyolefinsby liquid chromatography combined with atmosphericpressure photoionisation mass spectrometry[J].PolymerDegradation and Stability,2010,95(5):740-745
Aurisano N,Weber R,Fantke P.Enabling a circular economy for chemicals in plastics[J].Current Opinion inGreen and Sustainable Chemistry,2021,31:100513
European Chemicals Agency (ECHA).Mapping exercise:Plastic additives initiative[R/OL].[2023-12-11].https://echa.europa.eu/mapping-exercise-plastic-additives-initiative
Stales C A,Peterson D R,Parkerton T F,et al.The environmental fate of phthalate esters:A literature review[J].Chemosphere,199735(4):667-749
Du J,Li H X,Xu S D,et al.A review of organophosphorus flame retardants (OPFRs):Occurrence,bioaccumulation,toxicity,and organism exposure[J].EnvironmentalScience and Pollution Research International,2019,26(22):22126-22136
Tagatz M E,Plaia G R,Deans C H.Toxicity of dibutylphthalate-contaminated sediment to laboratory-and fieldcolonized estuarine benthic communities[J].Bulletin of Environmental Contamination and Toxicology,1986,37(1):141-150
Morris S,Allchin C R,Zegers B N,et al.Distribution andfate of HBCD and TBBPA brominated flame retardants inNorth Sea estuaries and aquatic food webs[J].Environmental Science&Technology,2004,38(21):5497-5504
United States Environmental Protection Agency (USEPA).Plastic additives initiative:Supplementary information on scope and methods[R].Washington DC:US EPA,2019
Kida M,Koszelnik P.Investigation of the presence andpossible migration from microplastics of phthalic acid esters and polycyclic aromatic hydrocarbons[J].Journal of Polymers and the Environment,2021,29(2):599-611
Ye X Y,Wang P Y,Wu Y C,et al.Microplastic acts as avector for contaminants:The release behavior of dibutylphthalate from polyvinyl chloride pipe fragments in waterphase[J].Environmental Science and Pollution ResearchInternational,2020,27(33):42082-42091
Luo H W,Li Y,Zhao Y Y,et al.Effects of accelerated aging on characteristics,leaching,and toxicity of commercial lead chromate pigmented microplastics[J].Environmental Pollution,2020,257:113475
Noyes P D,Haggard D E,Gonnerman G D,et al.Advanced morphological-behavioral test platform revealsneurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants[J].Toxicological Sciences:An Official Journal of the Society of Toxicology,2015,145(1):177-195
Li J,Xu Y,Li N,et al.Thyroid hormone disruption by organophosphate esters is mediated by nuclear/membranethyroid hormone receptors:In vitro,in vivo,and in silicostudies[J].Environmental Science&Technology,2022,56(7):4241-4250
Lu L P,Zhan T J,Ma M,et al.Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β:invitro,in vivo,and molecular dynamics simulation study[J].Environmental Science&Technology,2018,52(11):6617-6625
Tan H Y,Zhang R,Chen Q C,et al.Computational toxicology studies on the interactions between environmentalcontaminants and biomacromolecules[J].Chinese ScienceBulletin,2022,67:4180-4191
Jeong J,Choi J.Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCastTM and deep learning models combined approach[J].Environment International,2020,137:105557
Qiu S Q,Huang G Y,Fang G Z,et al.Chemical characteristics and toxicological effects of leachates from plasticsunder simulated seawater and fish digest[J].Water Research,2022,209:117892
郭上,陈光仕,周静,等.超高效液相色谱-四极杆/静电场轨道阱高分辨质谱非靶向筛查生物消化液浸滤作用下塑料制品中添加剂的释放[J].分析化学,2022,50(9):1373-1383 Guo S,Chen G S,Zhou J,et al.Non-target screening of plastic additives leaching under artificial biodigestive condition using ultra-high performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry[J].Chinese Journal of Analytical Chemistry,2022,50(9):1373-1383(in Chinese)
Skjevrak I,Brede C,Steffensen I L,et al.Non-targetedmulti-component analytical surveillance of plastic foodcontact materials:Identification of substances not includedin EU positive lists and their risk assessment[J].FoodAdditives and Contaminants,2005,22(10):1012-1022
Campanale C,Dierkes G,Massarelli C,et al.A relevantscreening of organic contaminants present on freshwaterand pre-production microplastics[J].Toxics,2020,8(4):100
Tian L,Zheng J Y,Goodyer C G,et al.Non-targetedscreening of plastic-related chemicals in food collected inMontreal,Canada[J].Food Chemistry,2020,326:126942
Kim H S,Lee Y J,Koo Y J,et al.Migration of monomers,plastic additives,and non-intentionally added substances from food utensils made of melamine-formaldehyde resin following ultraviolet sterilization[J].FoodControl,2021,125:107981
黎梓城,吴学峰,董犇,等.超高效液相色谱-四极杆飞行时间质谱法同时测定食品接触用塑料中50种添加剂的迁移量[J].分析测试学报,2022,41(6):903-909 Li Z C,Wu X F,Dong B,et al.Determination of migration of 50 additives in food contact plastics by ultra-performance liquid chromatography-quadrupole time-offlight mass spectrometry[J].Journal of Instrumental Analysis,2022,41(6):903-909(in Chinese)
Lestido-Cardama A,Barbosa-Pereira L,Sendón R,et al.Migration of dihydroxy alkylamines and their possibleimpurities from packaging into foods and food simulants:Analysis and safety evaluation[J].Polymers,2023,15(12):2656
Sapozhnikova Y, Nuñez A, Retired J J. Screening of chemicals migrating from plastic food contact materialsfor oven and microwave applications by liquid and gaschromatography-Orbitrap mass spectrometry[J]. Journal of Chromatography A, 2021, 1651:462261
Chen Q Q, Santos M M D, Tanabe P, et al. Bioassayguided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments afterexposure to simulated gastric juice of fish[J]. Journal of Hazardous Materials, 2021, 401:123421
Groh K J, Carney-Almroth B, Geueke B, et al. Database of chemicals associated with plastic packaging (CPPDB)[R/OL].[2023-12-11]. https://comptox.US EPA.gov/dashboard/chemical-lists/cppdblista. 2018. 10. 5281/zenodo.2658143
Aurisano N, Huang L, Milà i Canals L, et al. Chemicals of emerging concern (CECs) in plastic toys[J]. Environment International, 2021, 146:106194
United States Environmental Protection Agency (USEPA). Plastic map:Chemicals related to polymers[R/OL].[2023-12-11]. https://comptox. US EPA. gov/dashboard/chemical-lists/PLASTICMAP.2023
Wiesinger H, Wang Z Y, Hellweg S. Deep dive into plastic monomers, additives, and processing aids[J]. Environmental Science&Technology, 2021, 55(13):9339-9351
Verhaar H J M, Hermens J L M. Classifying environmental pollutants. 1:Structure-activity relationships for prediction of aquatic toxicity[J]. Chemosphere, 1992, 25(4):471-491
Verhaar H J M, Speksnijder J, Van Leeuwen C J, et al.Classifying environmental pollutants:Part 3. External validation of the classification system[J]. Chemosphere,2000, 40:875-883
Kienzler A, Bopp S, Halder M, et al. Application of newstatistical distribution approaches for environmental mixture risk assessment:A case study[J]. The Science of theTotal Environment, 2019, 693:133510
European Chemicals Agency (ECHA). PBT assessmentlist[R/OL].[2023-12-11]. https://echa.europa.eu/pbt_p_p_id=disslists_WAR_disslistsportlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&_disslists_WAR_disslistsportlet_javax.portlet.action=searchDissLists. 2023
Federal Environment Agency Germany (UBA). UBAPMT[EB/OL].[2023-12-11]. https://www.umweltbundesamt. de/publikationen/reach-improvement-of-guidancemethods-for-the.
European Chemicals Agency (ECHA). Substance evaluation-CoRAP[R/OL].[2023-12-11]. https://echa.europa.eu/information-on-chemicals/evaluation/community-rollingaction-plan/corap-table_p_p_id=disslists_WAR_disslistsportlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&_disslists_WAR_disslistsportlet_javax.portlet.action=searchDissLists.2023
Marvel S W, To K, Grimm F A, et al. ToxPi GraphicalUser Interface 2. 0:Dynamic exploration, visualization,and sharing of integrated data models[J]. BMC Bioinformatics, 2018, 19(1):80
Reif D M, Martin M T, Tan S W, et al. Endocrine profiling and prioritization of environmental chemicals usingToxCast data[J]. Environmental Health Perspectives,2010, 118(12):1714-1720
Cao M, Fan J P, Guo C S, et al. Comprehensive investigation and risk assessment of organic contaminants inYellow River Estuary using suspect and nontarget screening strategies[J]. Environment International, 2023, 173:107843
Feng X X, Sun H L, Liu X, et al. Occurrence and ecological impact of chemical mixtures in a semiclosed sea bysuspect screening analysis[J]. Environmental Science&Technology, 2022, 56(15):10681-10690
Kwan C S, Takada H. Release of Additives and Monomers from Plastic Wastes[M]//The Handbook of Environmental Chemistry. Cham:Springer International Publishing, 2016:51-70
Sridharan S, Kumar M, Saha M H, et al. The polymersand their additives in particulate plastics:What makesthem hazardous to the fauna?[J]. The Science of the TotalEnvironment, 2022, 824:153828
Menicagli V, Balestri E, Biale G, et al. Leached degradation products from beached microplastics:A potentialthreat to coastal dune plants[J]. Chemosphere, 2022, 303(Pt 3):135287
Bignardi C, Cavazza A, Laganà C, et al. UHPLC-highresolution mass spectrometry determination of bisphenolA and plastic additives released by polycarbonate tableware:Influence of ageing and surface damage[J]. Analytical and Bioanalytical Chemistry, 2015, 407(26):7917-7924
Tanaka K, Takada H, Yamashita R, et al. Facilitated leaching of additive-derived PBDEs from plastic by seabirds'stomach oil and accumulation in tissues[J]. Environmental Science&Technology, 2015, 49(19):11799-11807
Lithner D, Nordensvan I, Dave G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna[J]. EnvironmentalScience and Pollution Research International, 2012, 19(5):1763-1772