[1] |
彭永臻, 吴蕾, 马勇, 等. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学, 2010, 31(2): 273-281.
|
[2] |
YARLAGADDA N Y, REDDYANG K K. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2017, 247: 1128-1143.
|
[3] |
LUO J H, HAO T W, LI W, et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62(7): 127-135.
|
[4] |
LONG B, XUAN X P, YANG C Z, et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control[J]. Chemosphere, 2019, 225: 460-469. doi: 10.1016/j.chemosphere.2019.03.048
|
[5] |
高健磊, 张肖静, 李石磊, 等. A2/O2工艺处理氮肥废水的短程硝化反硝化[J]. 中国给水排水, 2011, 27(17): 15-17.
|
[6] |
李健, 王文菊, 东志强, 等. 高机硫和硫酸盐含量高COD制药废水处理工程[J]. 水处理技术, 2018, 44(11): 138-140.
|
[7] |
CORSINO S F, DI BIASE A, DEVLIN T R, et al. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater[J]. Bioresource Technology, 2016, 226: 150-157.
|
[8] |
CALUWE M, DOBBELEERS T, D'AES J, et al. Formation of aerobic granular sludge during the treatment of petrochemical wastewater[J]. Bioresource Technology, 2017, 238: 559-567. doi: 10.1016/j.biortech.2017.04.068
|
[9] |
冯殿宝, 王维红, 王燕杉, 等. 以黏土为载体的好氧颗粒污泥培养及其对番茄废水的处理[J]. 应用与环境生物学报, 2019, 44(1): 199-205.
|
[10] |
杨丹丹, 周安澜, 刘绍根. SBR反应器中好氧颗粒污泥培养及处理汽车涂装废水试验[J]. 工业用水与废水, 2019, 50(1): 8-12. doi: 10.3969/j.issn.1009-2455.2019.01.003
|
[11] |
LIU Y Q, TAY J H. Characteristics and stability of aerobic granules cultivated with different starvation time[J]. Applied Microbiology & Biotechnology, 2007, 75(1): 205-210.
|
[12] |
TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology & Biotechnology, 2001, 57(1/2): 227-233.
|
[13] |
LIU Y, YANG S F, TAY J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. Journal of Biotechnology, 2004, 108(2): 161-169. doi: 10.1016/j.jbiotec.2003.11.008
|
[14] |
LIU Y Q, LIU Y, TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology & Biotechnology, 2004, 65(2): 143-148.
|
[15] |
ZHANG L, FENG X, ZHU N, et al. Role of extracellular protein in the formation and stability of aerobic granules[J]. Enzyme & Microbial Technology, 2007, 41(5): 551-557.
|
[16] |
杨冰. 两种碳源条件下好氧颗粒污泥中细菌的群落结构研究[D]. 武汉: 武汉理工大学, 2015.
|
[17] |
SEVIOUR T W, LAMBERT L K, PIJUAN M, et al. Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus " Competibacter phosphatis "[J]. Applied Microbiology & Biotechnology, 2011, 92(6): 1297-1305.
|
[18] |
刘风华, 宋永会, 曾萍, 等. 厌氧出水培养好氧颗粒污泥及其微生物多样性分析[J]. 环境科学与技术, 2014, 37(1): 70-74.
|
[19] |
高景峰, 张丽芳, 张树军, 等. 两次污泥颗粒化过程中微生物群落的动态变化[J]. 环境科学, 2018, 39(5): 2265-2273.
|
[20] |
LV Y, WAN C, LEE D J, et al. Microbial communities of aerobic granules: Granulation mechanisms[J]. Bioresource Technology, 2014, 169: 344-351. doi: 10.1016/j.biortech.2014.07.005
|
[21] |
侯爱月, 李军, 王昌稳, 等. 不同好氧颗粒污泥中微生物群落结构特点[J]. 中国环境科学, 2016, 36(4): 1136-1144. doi: 10.3969/j.issn.1000-6923.2016.04.027
|
[22] |
杨春, 吕锡武. 农村生活污水处理ABR工艺的启动与污泥微生物特性[J]. 净水技术, 2017, 36(5): 79-85.
|
[23] |
邢雅娟. 生物除碳脱氮污泥组成、结构和性能研究[D]. 杭州: 浙江大学, 2015.
|
[24] |
LIU Y, LIU Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnology Advances, 2006, 24(1): 115-127. doi: 10.1016/j.biotechadv.2005.08.001
|
[25] |
远野. 废水碳氮硫污染物共脱除工艺调拉与生物硫回收参数优化[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[26] |
喻珊, 黄振山, 唐美如, 等. 氧含量对嗜热膜生物反应器烟气脱硝脱汞的影响[J]. 环境工程学报, 2018, 12(10): 2797-2806. doi: 10.12030/j.cjee.201805112
|
[27] |
聂毅磊, 贾纬, 曾艳兵, 等. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究[J]. 生物技术通报, 2017, 33(3): 116-121.
|
[28] |
杨浩, 张国珍, 杨晓妮, 等. 16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J]. 环境科学, 2017, 38(4): 1704-1716.
|
[29] |
SAHA P, KRISHNAMURTHI S, MAYILRAJ S, et al. Aquimonas voraii gen. nov., sp. nov., a novel gammaproteo bacterium isolated from a warm spring of Assam, India[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(4): 1491-1495. doi: 10.1099/ijs.0.63552-0
|
[30] |
潘丹, 黄巧云, 陈雯莉. 两株异养硝化细菌的分离鉴定及其脱氮特性[J]. 微生物学报, 2011, 51(10): 1382-1389.
|
[31] |
王建超, 郝瑞霞, 孟成成, 等. 3DBER-S反硝化脱氮性能及其菌群特征[J]. 环境科学研究, 2015, 28(2): 310-317.
|
[32] |
陈重军, 张海芹, 汪瑶琪, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016, 37(7): 2652-2658.
|
[33] |
吴安琪. 固体碳源反硝化生物膜反应器的脱氮性能研究[D]. 重庆: 重庆大学, 2017.
|
[34] |
陈小军, 黄韬, 刘石虎, 等. 污水厂尾水反硝化滤池生物/化学协同脱氮除磷研究[J]. 中国给水排水, 2017, 33(23): 27-32.
|
[35] |
LI A, YANG S, LI X, et al. Microbial population dynamics during aerobic sludge granulation at different organic loading rates[J]. Water Research, 2008, 42(13): 3552-3560. doi: 10.1016/j.watres.2008.05.005
|
[36] |
刘文如, 丁玲玲, 王建芳, 等. 低C/N比条件下亚硝化颗粒污泥的培养及成因分析[J]. 环境科学学报, 2013, 33(8): 2226-2233.
|
[37] |
ŚWIATCZAK P, CYDZIK-KWIATKOWSKA A. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant[J]. Environmental Science & Pollution Research, 2018, 25(2): 1655-1669.
|
[38] |
侯洁. 生物炭对潜流人工湿地生物脱氮影响机理研究[D]. 重庆: 西南大学, 2017.
|
[39] |
李建婷, 纪树兰, 刘志培, 等. 16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成[J]. 环境科学研究, 2009, 22(10): 1218-1223.
|
[40] |
信欣, 管蕾, 姚艺朵, 等. 低DO下AGS-SBR处理低COD/N生活污水长期运行特征及种群分析[J]. 环境科学, 2016, 37(6): 2259-2265.
|
[41] |
LI P, WANG Y, ZUO J, et al. Nitrogen removal and N2O accumulation during hydrogenotrophic denitrification: Influence of environmental factors and microbial community characteristics[J]. Environmental Science & Technology, 2016, 51(2): 870-879.
|