[1] |
ARUN V, MINO T, MATSUO T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems[J]. Water Research, 1988, 22(5): 565-570. doi: 10.1016/0043-1354(88)90056-5
|
[2] |
ABBASSI B, DULLSTEIN S, RÄBIGER N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: Experimental and theoretical approach[J]. Water Research, 2000, 34(1): 139-146. doi: 10.1016/S0043-1354(99)00108-6
|
[3] |
王珍宝, 施春红, 黄晓龙, 等. 低溶解氧条件下分段进水对SBR工艺脱氮除磷效果的影响研究[J]. 安全与环境工程, 2018, 25(2): 95-100.
|
[4] |
王中玮, 彭永臻, 王淑莹, 等. 不同运行方式下低溶解氧污泥微膨胀的可行性研究[J]. 环境科学, 2011, 32(8): 2347-2352.
|
[5] |
马娟, 宋璐, 俞小军, 等. 超低溶解氧条件下的EBPR系统除磷性能[J]. 环境科学, 2016, 37(8): 3128-3134.
|
[6] |
ARIYANTO E, SEN T K, ANG H M. The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation[J]. Advanced Powder Technology, 2014, 25(2): 682-694. doi: 10.1016/j.apt.2013.10.014
|
[7] |
ZHU Z Y, CHEN W L, TAO T, et al. A novel AAO-SBSPR process based on phosphorus mass balance for nutrient removal and phosphorus recovery from municipal wastewater[J]. Water Research, 2018, 144: 763-773. doi: 10.1016/j.watres.2018.08.058
|
[8] |
YAN H L, CHEN Q W, LIU J H, et al. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer[J]. Water Research, 2018, 145: 721-730. doi: 10.1016/j.watres.2018.09.005
|
[9] |
郝晓地, 王崇臣, 金文标. 磷危机概观与磷回收技术[M]. 北京: 高等教育出版社, 2011.
|
[10] |
张莹, 李咏梅. 城市污水侧流磷回收工艺的研究进展[J]. 环境科学与技术, 2016, 39(S1): 126-130.
|
[11] |
吕景花. 厌氧释磷上清液侧流化学磷回收对主流生物除磷系统的影响研究[D]. 西安: 西安建筑科技大学, 2015.
|
[12] |
郝晓地, 戴吉, 胡沅胜, 等. C/P比与磷回收对生物营养物去除系统影响的试验研究[J]. 环境科学, 2008, 29(11): 3098-3103. doi: 10.3321/j.issn:0250-3301.2008.11.018
|
[13] |
马娟, 宋璐, 俞小军, 等. 侧流磷回收对低溶解氧EBPR系统性能的影响[J]. 环境科学, 2017, 38(3): 1130-1136. doi: 10.3969/j.issn.1673-2049.2017.03.008
|
[14] |
俞小军, 李杰, 周猛, 等. 长期侧流提取对EBPR系统除磷及其磷回收性能的影响[J]. 环境科学, 2018, 39(9): 4274-4280.
|
[15] |
HESSELMANN R P, WERLEN C, HAHN D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic & Applied Microbiology, 1999, 22(3): 454-465.
|
[16] |
席粉鹊, 袁林江, 吕景花. 侧流化学除磷对AO连续流生物除磷系统的影响[J]. 环境工程学报, 2014, 8(12): 5231-5236.
|
[17] |
袁林江, 刘传波, 罗大成, 等. 同步化学除磷对污水处理系统及A2/O单元的影响研究[J]. 安全与环境学报, 2017, 17(6): 2353-2359.
|
[18] |
刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978.
|
[19] |
彭赵旭, 韩微, 彭志远, 等. 反应时间和碳磷比对单级好氧除磷的影响[J]. 郑州大学学报(工学版), 2018, 39(4): 46-50.
|
[20] |
唐玉朝, 伍昌年, 杨慧, 等. 改良氧化沟活性污泥ORP的调控及对磷吸收/释放的影响[J]. 工业水处理, 2012, 32(3): 19-22. doi: 10.3969/j.issn.1005-829X.2012.03.005
|
[21] |
WELLES L, TIAN W D, SAAD S, et al. Accumulibacter clades type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83: 354-366. doi: 10.1016/j.watres.2015.06.045
|
[22] |
WELLES L, LOPEZ-VAZQUEZ C M, HOOIJMANS C M, et al. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions[J]. AMB Express, 2016, 6(1): 44-55. doi: 10.1186/s13568-016-0214-z
|
[23] |
ACEVEDO B, OEHMEN A, CARVALHO G, et al. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage[J]. Water Research, 2012, 46(6): 1889-1900. doi: 10.1016/j.watres.2012.01.003
|
[24] |
ACEVEDO B, BORRÁS L, OEHMEN A, et al. Modelling the metabolic shift of polyphosphate-accumulating organisms[J]. Water Research, 2014, 65: 235-244. doi: 10.1016/j.watres.2014.07.028
|
[25] |
LYU J H, YUAN L J, CHEN X, et al. Phosphorus metabolism and population dynamics in a biological phosphate-removal system with simultaneous anaerobic phosphate stripping[J]. Chemosphere, 2014, 117(1): 715-721.
|