[1] |
孔德生, 吕文华, 冯媛媛, 等. DSA电极电催化性能研究及尚待深入探究的几个问题[J]. 化学进展, 2009, 21(6): 1107-1117.
|
[2] |
徐浩, 邵丹, 杨鸿辉, 等. Ti/Sb-SnO2电极电解后的表面状态变化[J]. 西安交通大学学报, 2014, 48(2): 93-98.
|
[3] |
ZHU F L, MENG Y S, HUANG X Y. Electro-catalytic degradation properties of Ti/SnO2-Sb electrodes doped with different rare earths[J]. Rare Metals, 2016, 35(5): 412-418. doi: 10.1007/s12598-014-0397-x
|
[4] |
LI S P, ZENG X Y, JIANG Y Y. The study on the effect of Er on the structure and properties of Ti/SnO2-Sb anode prepared by pechini’s method[J]. Advanced Materials Research, 2013, 699: 724-729. doi: 10.4028/www.scientific.net/AMR.699
|
[5] |
FENG Y, CUI Y H, LIU J, et al. Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode[J]. Journal of Hazardous Materials, 2010, 178(1): 29-34.
|
[6] |
LI S, LI Y, WANG W, et al. Electro-catalytic degradation pathway and mechanism of acetamiprid using Er doped Ti/SnO2-Sb electrode[J]. RSC Advances, 2015, 5(84): 68700-68713. doi: 10.1039/C5RA09376G
|
[7] |
MERATI Z, PARSA J B. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials[J]. Applied Surface Science, 2017, 435: 535-542.
|
[8] |
YING D, YE C, WEN Q, et al. Fabrication of dense spherical and rhombic Ti/Sb-SnO2 electrodes with enhanced electrochemical activity by colloidal electrodeposition[J]. Journal of Electroanalytical Chemistry, 2016, 768: 81-88. doi: 10.1016/j.jelechem.2016.02.044
|
[9] |
XIAO C, ZHAO G, LEI Y, et al. Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time[J]. Materials Chemistry & Physics, 2009, 113(1): 314-321.
|
[10] |
HAO A, HAO C, ZHANG W, et al. Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb-SnO2 /PbO2 anode in the degradation of C.I. reactive blue 194(RB 194)[J]. Chemical Engineering Journal, 2012, 209: 86-93. doi: 10.1016/j.cej.2012.07.089
|
[11] |
LIAO Y, YUAN B, ZHANG D, et al. Fabrication of heterostructured metal oxide/TiO2 nanotube arrays prepared via thermal decomposition and crystallization[J]. Inorganic Chemistry, 2018, 57(16): 10249-10256. doi: 10.1021/acs.inorgchem.8b01483
|
[12] |
马文臣, 刘宜利, 徐世杰, 等. 催化氧化法在钻井废水处理中的应用[J]. 油气田环境保护, 2004, 14(1): 15-16. doi: 10.3969/j.issn.1005-3158.2004.01.005
|
[13] |
刘音, 崔远众, 常青, 等. 油田钻井废液处理研究进展[J]. 石油化工应用, 2014, 33(10): 1-5. doi: 10.3969/j.issn.1673-5285.2014.10.001
|
[14] |
张红岩, 吕荣湖, 郭绍辉. 混凝-臭氧氧化法处理三磺泥浆体系钻井废水[J]. 过程工程学报, 2007, 7(4): 718-722. doi: 10.3321/j.issn:1009-606x.2007.04.016
|
[15] |
余晓霞, 蒲晓林. 化学破乳法在钻井废水处理中的应用综述[J]. 油气田环境保护, 2007, 17(2): 43-46. doi: 10.3969/j.issn.1005-3158.2007.02.013
|
[16] |
邓磊, 蒋姝, 黄文章, 等. 臭氧-Fenton联合氧化处理钻井液废水研究[J]. 工业水处理, 2018, 38(2): 44-47. doi: 10.11894/1005-829x.2018.38(2).044
|
[17] |
潘杰, 戴学文, 李晗, 等. 4-氨基安替比林分光光度法测定苯酚滴耳液中苯酚含量[J]. 天津医科大学学报, 2015, 21(1): 87-89.
|
[18] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[19] |
蒋朦. 电化学体系中羟基自由基的检测及生成规律的影响研究[D]. 西安: 西安建筑科技大学, 2015.
|
[20] |
CHAI S, ZHAO G, LI P, et al. Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: Fabrication and application for efficient toxicity elimination of nitrophenol wastewater[J]. Journal of Physical Chemistry C, 2011, 115(37): 18261-18269. doi: 10.1021/jp205228h
|
[21] |
CHEN A. Electrocatalytic enhancement of salicylic acid oxidation at electrochemically reduced TiO2 nanotubes[J]. ACS Catalysis, 2014, 4(8): 2616-2622. doi: 10.1021/cs500487a
|
[22] |
MARCO P, GIACOMO C. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. doi: 10.1021/cr9001319
|