[1] |
BULASARA V K, THAKURIA H, UPPALURI R, et al. Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths[J]. Journal of Materials Processing Technology, 2011, 211(9): 1488-1499. doi: 10.1016/j.jmatprotec.2011.03.022
|
[2] |
SHAO Z, CAI Z, HU R, et al. The study of electroless nickel plating directly on magnesium alloy[J]. Surface & Coatings Technology, 2014, 249: 42-47.
|
[3] |
符丽纯, 戴建军, 陈利芳, 等. 基于树脂吸附的电镀废水深度处理工程实例[J]. 水处理技术, 2018, 44(1): 128-131.
|
[4] |
程仁振, 邱立平, 刘贵彩, 等. 陶瓷膜-反渗透工艺用于电镀废水深度处理[J]. 中国给水排水, 2018, 34(14): 41-45.
|
[5] |
SHI Y J, LIN C P, HUANG Y H, et al. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation and Purification Technology, 2013, 104: 100-105. doi: 10.1016/j.seppur.2012.11.025
|
[6] |
刘洋. 化学镀镍废水中污染物去除工艺的研究[D]. 广州: 华南理工大学, 2015.
|
[7] |
XU G R, SHEN T, MA Y Y, et al. Treatment of wastewater discharged from electroless nickel plating process by high-voltage pulsed electrocoagulation[J]. Electroplating & Finishing, 2017, 23(36): 1284-1287.
|
[8] |
HUANG Y X, LUO M Y, XU Z H. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst[J]. Separation and Purification Technology, 2019, 221: 269-278. doi: 10.1016/j.seppur.2019.03.073
|
[9] |
LI X F, CHEN W Y, MA L M, et al. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst[J]. Chemosphere, 2018, 195: 336-343. doi: 10.1016/j.chemosphere.2017.12.080
|
[10] |
ZHUANG H, HAN H, JIA S, et al. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2014, 157: 223-230. doi: 10.1016/j.biortech.2014.01.105
|
[11] |
涂勇, 张耀辉, 徐军, 等. 臭氧对化工园区废水厂二级出水的选择性氧化[J]. 环境工程学报, 2015, 9(11): 2595-2300.
|
[12] |
ZHUANG H, HAN H, HOU B, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014, 166: 178-186. doi: 10.1016/j.biortech.2014.05.056
|
[13] |
HUANG G, PAN F, FAN G, et al. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater[J]. Journal of Environmental Science and Health, 2016, 51(8): 626-633.
|
[14] |
张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/A12O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016, 36(10): 3003-3009. doi: 10.3969/j.issn.1000-6923.2016.10.023
|
[15] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[16] |
荣宏伟, 李健中, 张可方. 铜对活性污泥微生物活性影响研究[J]. 环境工程学报, 2010, 4(8): 1709-1713.
|
[17] |
徐军, 涂勇, 武倩, 等. 臭氧、臭氧/双氧水催化氧化深度处理化工废水[J]. 工业水处理, 2017, 37(4): 62-65. doi: 10.11894/1005-829x.2017.37(4).015
|
[18] |
TAMURA H, TANAKA A, KY M, et al. Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity[J]. Journal of Colloid & Interface Science, 1999, 209(1): 225-231.
|
[19] |
NADEZHDIN A D. Mechanism of ozone decomposition in water: Therole of termination[J]. Industrial & Engineering Chemistry Research, 1988, 27(4): 548-550.
|
[20] |
陈炜彧, 李旭芳, 马鲁铭. 铁基催化剂催化臭氧深度处理煤化工废水[J]. 环境工程学报, 2018, 12(1): 86-92. doi: 10.12030/j.cjee.201706031
|
[21] |
王兵, 周望, 任宏洋, 等. MgO催化臭氧氧化降解苯酚机理研究[J]. 环境科学学报, 2016, 36(11): 4009-4016.
|
[22] |
王海燕, 蒋展鹏, 杨宏伟. 电助光催化氧化过程中羟基自由基(OH·)的定量分析[J]. 环境工程学报, 2008, 2(2): 225-228.
|
[23] |
关智杰, 郭艳平, 区雪连, 等. 臭氧预破络-重金属捕集耦合体系高效去除废水中络合态镍的机理研究[J]. 环境科学学报, 2019, 39(6): 1754-1762.
|
[24] |
张雪, 丁鑫, 杨浈, 等. 腐殖质氧化还原官能团测定新方法[J]. 环境化学, 2016, 35(10): 2106-2116.
|
[25] |
蒋绍阶, 刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报, 2002, 24(2): 61-65.
|
[26] |
荣宏伟, 张耀坤, 张朝升, 等. INT·ETS活性及AUR和SOUR表征污泥活性的比较[J]. 环境科学研究, 2016, 29(5): 767-773.
|
[27] |
杨茜, 于茵, 周岳溪, 等. 石化工业园区有毒废水来源识别研究[J]. 环境科学, 2014, 35(12): 4582-4588.
|
[28] |
周洪政, 刘平, 张静, 等. 微气泡臭氧催化氧化-生化耦合处理难降解含氮杂环芳烃[J]. 中国环境科学, 2017, 37(8): 2978-2985. doi: 10.3969/j.issn.1000-6923.2017.08.021
|