[1] |
XIAO K, XU Y, LIANG S, et al. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Frontiers of Environmental Science & Engineering, 2014, 8(6): 805-819.
|
[2] |
SUN J, LIANG P, YAN X, et al. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application[J]. Water Research, 2016, 93: 205-213. doi: 10.1016/j.watres.2016.02.026
|
[3] |
TAHA T, CUI Z F. CFD modelling of slug flow in vertical tubes[J]. Chemical Engineering Science, 2006, 61(2): 676-687. doi: 10.1016/j.ces.2005.07.022
|
[4] |
DU X, WANG Y, LESLIE G, et al. Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: A review[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3): 463-478.
|
[5] |
VERRECHT B, JUDD S, GUGLIELMI G, et al. An aeration energy model for an immersed membrane bioreactor[J]. Water Research, 2008, 42(19): 4761-4770. doi: 10.1016/j.watres.2008.09.013
|
[6] |
MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006
|
[7] |
IGLESIAS R, SIMÓN P, MORAGAS L, et al. Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors[J]. Water Science and Technology, 2017, 75(11): 2562-2570. doi: 10.2166/wst.2017.132
|
[8] |
LEBERRE O, DAUFIN G. Skimmilk crossflow microfiltration performance versus permeation flux to wall shear stress ratio[J]. Journal of Membrane Science, 1996, 117(1/2): 261-270.
|
[9] |
CHAN C C V, BÉRUBÉ P R, HALL E R. Relationship between types of surface shear stress profiles and membrane fouling[J]. Water Research, 2011, 45(19): 6403-6416. doi: 10.1016/j.watres.2011.09.031
|
[10] |
KAYA R, DEVECI G, TURKEN T, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation[J]. Desalination, 2014, 351: 109-119. doi: 10.1016/j.desal.2014.07.033
|
[11] |
CHAN C C V, BÉRUBÉ P R, HALL E R. Shear profiles inside gas sparged submerged hollow fiber membrane modules[J]. Journal of Membrane Science, 2007, 297(1/2): 104-120.
|
[12] |
ABDULLAH S Z, WRAY H E, BÉRUBÉ P R, et al. Distribution of surface shear stress for a densely packed submerged hollow fiber membrane system[J]. Desalination, 2015, 357: 117-120. doi: 10.1016/j.desal.2014.11.014
|
[13] |
WRAY H E, ANDREWS R C, BÉRUBÉ P R. Surface shear stress and membrane fouling when considering natural water matrices[J]. Desalination, 2013, 330: 22-27. doi: 10.1016/j.desal.2013.09.018
|
[14] |
YAMANOI I, KAGEYAMA K. Evaluation of bubble flow properties between flat sheet membranes in membrane bioreactor[J]. Journal of Membrane Science, 2010, 360(1/2): 102-108.
|
[15] |
DUCOM G, PUECH F P, CABASSUD C. Gas/liquid two-phase flow in a flat sheet filtration module: Measurement of local wall shear stresses[J]. The Canadian Journal of Chemical Engineering, 2003, 81(3/4): 771-775.
|
[16] |
DREWS A, PRIESKE H, MEYER E L, et al. Advantageous and detrimental effects of air sparging in membrane filtration: Bubble movement, exerted shear and particle classification[J]. Desalination, 2010, 250(3): 1083-1086. doi: 10.1016/j.desal.2009.09.113
|
[17] |
BÖHM L, KRAUME M. Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems[J]. Journal of Membrane Science, 2015, 475: 533-544. doi: 10.1016/j.memsci.2014.11.003
|
[18] |
PRIESKE H, DREWS A, KRAUME M. Prediction of the circulation velocity in a membrane bioreactor[J]. Desalination, 2008, 231(1/2/3): 219-226.
|
[19] |
NDINISA N V, FANE A G, WILEY D E, et al. Fouling control in a submerged flat sheet membrane system: Part II Two-phase flow characterization and CFD simulations[J]. Separation Science and Technology, 2006, 41(7): 1411-1445. doi: 10.1080/01496390600633915
|
[20] |
RATKOVICH N, CHAN C C V, BERUBE P R, et al. Experimental study and CFD modelling of a two-phase slug flow for an airlift tubular membrane[J]. Chemical Engineering Science, 2009, 64(16): 3576-3584. doi: 10.1016/j.ces.2009.04.048
|
[21] |
ESSEMIANI K, DUCOM G, CABASSUD C, et al. Spherical cap bubbles in a flat sheet nanofiltration module: Experiments and numerical simulation[J]. Chemical Engineering Science, 2001, 56(21): 6321-6327.
|
[22] |
PRIESKE H, BÖHM L, DREWS A, et al. Optimised hydrodynamics for membrane bioreactors with immersed flat sheet membrane modules[J]. Desalination and Water Treatment, 2010, 18(1/2/3): 270-276.
|
[23] |
WANG B, ZHANG K, FIELD R W. Novel aeration of a large-scale flat sheet MBR: A CFD and experimental investigation[J]. AIChE Journal, 2018, 64(7): 2721-2736. doi: 10.1002/aic.16164
|
[24] |
HIRT C W, NICHOLS B D. A computational method for free surface hydrodynamics[J]. Journal of Pressure Vessel Technology, 1981, 103(2): 136-141. doi: 10.1115/1.3263378
|
[25] |
ZAHEDI P, SALEH R, MORENO-ATANASIO R, et al. Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method[J]. Korean Journal of Chemical Engineering, 2014, 31(8): 1349-1361. doi: 10.1007/s11814-014-0063-x
|
[26] |
FIMBRES-WEIHS G A, WILEY D E. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(7): 759-781. doi: 10.1016/j.cep.2010.01.007
|
[27] |
VLAEV S D, TSIBRANSKA I. Shear stress generated by radial flow impellers at bioreactor integrated membranes[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 959-968. doi: 10.1134/S004057951606018X
|
[28] |
COOKE J J, ARMSTRONG L M, LUO K H, et al. Adaptive mesh refinement of gas-liquid flow on an inclined plane[J]. Computers & Chemical Engineering, 2014, 60: 297-306.
|
[29] |
THEODORAKAKOS A, BERGELES G. Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface[J]. International Journal for Numerical Methods in Fluids, 2004, 45(4): 421-439. doi: 10.1002/fld.706
|
[30] |
CLIFT R, GRACE J R, WEBER M E. Bubbles, Drops, and Particles[M]. Courier Corporation, 1978:171-175.
|
[31] |
MA D, LIU M, ZU Y, et al. Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns[J]. Chemical Engineering Science, 2012, 72: 61-77. doi: 10.1016/j.ces.2012.01.013
|
[32] |
ISLAM M T, GANESAN P, SAHU J N, et al. Single air bubble rise in water: A CFD study[J]. Mechanical Engineering Research Journal, 2013, 9: 1-6.
|