[1] |
JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the status and global strategy for neonicotinoids[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2897-2908. doi: 10.1021/jf101303g
|
[2] |
谭颖, 张琪, 赵成, 等. 蔬菜水果中的新型烟碱类农药残留量与人群摄食暴露健康风险评价[J]. 生态毒理学报, 2016, 11(6): 67-81.
|
[3] |
SULTANA T, MURRAY C, KLEYWEGT S, et al. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada[J]. Chemosphere, 2018, 202: 506-523. doi: 10.1016/j.chemosphere.2018.02.108
|
[4] |
SECCIA S, FIDENTE P, MONTESANO D, et al. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection[J]. Journal of Chromatography A, 2008, 1214: 115-120. doi: 10.1016/j.chroma.2008.10.088
|
[5] |
WAN Y J, WANG Y, XIA W, et al. Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential[J]. Science of the Total Environment, 2019, 675: 513-519. doi: 10.1016/j.scitotenv.2019.04.267
|
[6] |
KARMAKAR R, KULSHRESTHA G. Persistence, metabolism and safety evaluation of thiamethoxam in tomato crop[J]. Pest Management Science, 2009, 65(8): 931-937. doi: 10.1002/ps.1776
|
[7] |
KÜLTIĞIN Ç, EMINE Y, ZAFER T, et al. Physiological, anatomical, biochemical, and cytogenetic effects of thiamethoxam treatment on Allium cepa (amaryllidaceae) L[J]. Environmental Toxicology, 2012, 27(11): 635-643. doi: 10.1002/tox.20680
|
[8] |
DONG Y M, WANG G L, JIANG P P, et al. Simple preparation and catalytic properties of ZnO for ozonation degradation of phenol in water[J]. Chinese Chemical Letters, 2011, 22(2): 209-212. doi: 10.1016/j.cclet.2010.10.010
|
[9] |
刘保东. 噻虫胺的水解和光化学降解研究[D]. 新乡: 河南师范大学, 2013
|
[10] |
YANG H, LIU H, HU Z, et al. Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process[J]. Chemical Engineering Journal, 2014, 245: 24-33. doi: 10.1016/j.cej.2014.02.016
|
[11] |
SUCHAIL S, DEBRAUWER L, BELZUNCES L P, et al. Metabolism of imidacloprid in apis mellifera[J]. Pest Management Science, 2004, 60(3): 291-296. doi: 10.1002/ps.772
|
[12] |
YUAN M, LIU X, LI C, et al. A higher efficiency removal of neonicotinoid insecticides by modified cellulose-based complex particle[J]. International Journal of Biological Macromolecules, 2018, 126: 857-866.
|
[13] |
MOMČILOVIĆ M Z, RANĐELOVIĆ M S, PURENOVIĆ M, et al. Synthesis and characterization of resorcinol formaldehyde carbon cryogel as efficient sorbent for imidacloprid removal[J]. Desalination and Water Treatment, 2014, 52(37/38/39): 7306-7316.
|
[14] |
MOHAMMADA S G, AHMED S M. Adsorptive removal of acetamiprid pesticide from aqueous solution using environmentally friendly natural and agricultural wastes[J]. Desalination and Water Treatment, 2019, 145: 280-290. doi: 10.5004/dwt.2019.23644
|
[15] |
LIU G, LI L, XU D, et al. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal[J]. Carbohydrate Polymers, 2017, 175: 584-591. doi: 10.1016/j.carbpol.2017.06.074
|
[16] |
SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review on metal-organic frameworks: Synthesis and applications[J]. Trends in Analytical Chemistry, 2019, 118: 401-425. doi: 10.1016/j.trac.2019.06.007
|
[17] |
FURUKAWA S, REBOUL J, STÉPHANE D, et al. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale[J]. Chemical Society Reviews, 2014, 43(16): 5730-5734.
|
[18] |
XIE K, SHAN C, QI J, et al. Study of adsorptive removal of phenol by MOF-5[J]. Desalination and Water Treatment, 2014, 54(3): 654-659.
|
[19] |
龚文朋, 陈竹青, 马海芹, 等. H6P2Mo15W3O62改性MOF-508金属有机框架对水中亚甲基蓝的吸附[J]. 湖北大学学报(自然科学版), 2017, 39(1): 1-7.
|
[20] |
BHADRA B N, JHUNG S H. Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon[J]. Microporous and Mesoporous Materials, 2018, 270: 102-108. doi: 10.1016/j.micromeso.2018.05.005
|
[21] |
QIN F X, JIA S Y, LIU Y, et al. Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks[J]. Desalination and Water Treatment, 2015, 54(1): 93-102. doi: 10.1080/19443994.2014.883331
|
[22] |
HU C, XIAO J D, MAO X D, et al. Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive[J]. Materials Letters, 2019, 240: 113-116. doi: 10.1016/j.matlet.2018.12.123
|
[23] |
YANG H, BRIGHT J, KASANI S, et al. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting[J]. Nano Research, 2019, 12: 1-8. doi: 10.1007/s12274-018-2206-6
|
[24] |
ZHANG M W, LIN K Y A, HUANG C F, et al. Enhanced degradation of toxic azo dye, amaranth, in water using oxone catalyzed by MIL-101-NH2 under visible light irradiation[J]. Separation and Purification Technology, 2019, 227: 1-9.
|
[25] |
LI X, PI Y, XIA Q, et al. TiO2 encapsulated in salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB[J]. Applied Catalysis B: Environmenta, 2016, 191: 192-201. doi: 10.1016/j.apcatb.2016.03.034
|
[26] |
李超, 王亦修, 孟凡超, 等. 氨基改性MIL-101(Cr)用于CH4/CO2吸附分离的研究[J]. 天然气化工(C1化学与化工), 2015, 40: 24-29.
|
[27] |
王方平, 夏昌坤, 陈敏, 等. 2-氨基-1, 3, 5-苯三甲酸的合成方法及其用于制备NH2-MOF-808的用途: CN 109796359. A[P]. 2019-05-24.
|
[28] |
陶海军, 黄艳芳, 王子惠, 等. 以羧酸盐为有机配体合成金属有机骨架材料MIL-101(Cr)[J]. 南京工业大学学报, 2018, 40(5): 40-47.
|
[29] |
李小蒙, 王旭坤, 吴怡秋, 等. 金属有机骨架纳米材料-固相萃取环境水样中亚硝胺类消毒副产物[J]. 环境化学, 2019, 38(6): 1258-1265. doi: 10.7524/j.issn.0254-6108.2018120603
|
[30] |
LU H, ZHANG H, WANG J, et al. A novel quinone/reduced graphene oxide composite as a solid-phase redox mediator for chemical and biological acid yellow 36 reduction[J]. RSC Advance, 2014, 88(4): 47297-47303.
|
[31] |
高曼. 基于双功能溶剂与MOFs的微萃取技术及其在污染物分析中的应用[D]. 温州: 温州医科大学, 2018.
|
[32] |
唐芳. 氨基MIL-101后修饰产物的制备、表征以及吸附脱硫脱氮性能研究[D]. 北京: 北京化工大学, 2018.
|
[33] |
LIU Z, CHEN Y, SUN J, et al. Amine grafting on coordinatively unsaturated metal centers of MIL-101Cr for improved water absorption characteristics[J]. Inorganica Chimica Acta, 2018, 473: 29-36. doi: 10.1016/j.ica.2017.12.024
|
[34] |
WANG X R, LI H Q, HOU X J. Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19814-19821. doi: 10.1021/jp3052938
|
[35] |
WANG S P, HOU S H, WU C, et al. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid[J]. Chinese Chemical Letters, 2019, 30(2): 398-402. doi: 10.1016/j.cclet.2018.06.021
|
[36] |
周圣文, 方亮, 赵欢, 等. 氯化亚锡和纳米二氧化硅对PET材料表面亲水性影响[J]. 表面技术, 2016, 45(4): 213-217.
|
[37] |
卢阳阳, 关舒会, 李玉博, 等. 叶菜中三种新型烟碱类农药的残留吸附动力学和复合效应初探[J]. 植物保护, 2018, 44(3): 37-42.
|
[38] |
姜媛. 不同生物质制备的高温生物炭对水中芳香性有机污染物的吸附机制及规律[D]. 杭州: 浙江大学, 2017.
|
[39] |
ALLAN P, SCHAUMANN G E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review[J]. Environmental Science & Technology, 2014, 48(16): 8946-8962.
|
[40] |
ROY A, ADHIKARI B, MAJUMDER S B. Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6502-6512.
|
[41] |
夏文君, 徐劼, 刘峰, 等. 秸秆生物炭对双氯芬酸钠的吸附性能研究[J]. 中国环境科学, 2019, 39(3): 160-166.
|
[42] |
张梦圆, 马晓国, 黄仁峰, 等. 砷(Ⅲ)离子印迹聚合物的制备及吸附性能研究[J]. 环境科学学报, 2013, 39(7): 3010-3017.
|
[43] |
LANGMUIR I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society, 1916, 38(11): 2221-2295. doi: 10.1021/ja02268a002
|
[44] |
陈垂汉, 孙建洋, 李莹, 等. 印染污泥制备活性炭对亚甲基蓝的吸附[J]. 环境工程学报, 2018, 12(7): 26-32.
|
[45] |
LIU T, XIE Z H, ZHANG Y, et al. Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water[J]. RSC Advance, 2017, 61(7): 38279-38286.
|