[1] |
TIAN Y S, MEI X S, LIANG Q, et al. Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells[J]. RSC Advances, 2017, 7(14): 8376-8380. doi: 10.1039/C6RA27385H
|
[2] |
FANG C, BOE K, ANGELIDAKI I. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors[J]. Bioresource Technology, 2011, 102(10): 5734-5741. doi: 10.1016/j.biortech.2011.03.013
|
[3] |
张秀明, 韩雪, 陈志强. UASB-A/O工艺处理马铃薯淀粉废水[J]. 中国给水排水, 2011, 27(14): 78-80.
|
[4] |
SCHALCHLI H, HORMAZABAL E, RUBILAR O, et al. Production of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi using potato solid wastes as the sole nutrient source[J]. Journal of Applied Microbiology, 2017, 123(4): 886-895. doi: 10.1111/jam.13542
|
[5] |
KAMYAB B, ZILOUEI H, RAHMANIAN B. Investigation of the effect of hydraulic retention time on anaerobic digestion of potato leachate in two-stage mixed-UASB system[J]. Biomass and Bioenergy, 2019, 130: 105383. doi: 10.1016/j.biombioe.2019.105383
|
[6] |
ANTWI P, LI J Z, OPOKU B P, et al. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB[J]. Bioresource Technology, 2017, 235: 348-357. doi: 10.1016/j.biortech.2017.03.141
|
[7] |
YU D W, LIU J B, SUI Q W, et al. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater[J]. Bioresource Technology, 2016, 203: 62-70. doi: 10.1016/j.biortech.2015.12.010
|
[8] |
ANTWI P, LI J, SHI E, et al. Modelling biogas fermentation from anaerobic digestion: Potato starch processing wastewater treated within an up flow anaerobic sludge blanket[J]. Journal of Bioremediation & Biodegradation, 2017, 8(2): 1-9.
|
[9] |
YU D W, MENG X S, LIU J B, et al. Formation and characteristics of a ternary pH buffer system for in-situ biogas upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater[J]. Bioresource Technology, 2018, 269: 57-66. doi: 10.1016/j.biortech.2018.08.072
|
[10] |
ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852.
|
[11] |
GALLERT C, WINTER J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production[J]. Applied Microbiology and Biotechnology, 1997, 48(3): 405-410. doi: 10.1007/s002530051071
|
[12] |
LI Y, ZHANG Y, SUN Y M, et al. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition[J]. Bioresource Technology, 2017, 231: 94-100. doi: 10.1016/j.biortech.2017.01.068
|
[13] |
MULLER T, WALTER B, WIRTZ A, et al. Ammonium toxicity in bacteria[J]. Current Microbiology, 2006, 52(5): 400-406. doi: 10.1007/s00284-005-0370-x
|
[14] |
张玉秀, 孟晓山, 王亚炜, 等. 畜禽废弃物厌氧消化过程的氨氮抑制及其应对措施研究进展[J]. 环境工程学报, 2018, 12(4): 985-598. doi: 10.12030/j.cjee.201706043
|
[15] |
GALLERT C, BAUER S, WINTER J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population[J]. Applied Microbiology and Biotechnology, 1998, 50(4): 495-501. doi: 10.1007/s002530051326
|
[16] |
BANKS C J, CHESSHIRE M, HEAVEN S, et al. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance[J]. Bioresource Technology, 2011, 102(2): 612-620. doi: 10.1016/j.biortech.2010.08.005
|
[17] |
CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057
|
[18] |
MAO C, FENG Y, WANG X, et al. Review on research achievements of biogas from anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 540-555. doi: 10.1016/j.rser.2015.02.032
|
[19] |
CAPSON-TOJO G, MOSCOVIZ R, ASTALS S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 1-16.
|
[20] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[21] |
FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. doi: 10.1007/s002530050481
|
[22] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
|
[23] |
FORD D L, CHURCHWELL R L, KACHTICK J W. Comprehensive analysis of nitrification of chemical-processing wastewaters[J]. Journal Water Pollution Control Federation, 1980, 52(11): 2726-2746.
|
[24] |
KAFLE G K, KIM S H. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation[J]. Applied Energy, 2013, 103: 61-72. doi: 10.1016/j.apenergy.2012.10.018
|
[25] |
孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064
|
[26] |
LAY J J, LI Y Y, NOIKE T. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes[J]. Water Environment Research, 1998, 70(5): 1075-1082. doi: 10.2175/106143098X123426
|
[27] |
WAN J J, JING Y H, ZHANG S C, et al. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis[J]. Water Research, 2016, 102: 524-532. doi: 10.1016/j.watres.2016.07.002
|
[28] |
CHEN Y, JIANG X, XIAO K K, et al. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase: Investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112: 261-268. doi: 10.1016/j.watres.2017.01.067
|
[29] |
ZHANG W Q, LANG Q Q, WU S B, et al. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China[J]. Bioresource Technology, 2014, 156: 63-69. doi: 10.1016/j.biortech.2014.01.013
|
[30] |
LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039
|
[31] |
AHRING B K, SANDBERG M, ANGELIDAKI I J A M, et al. Volatile fatty acids as indicators of process imbalance in anaerobic digestors[J]. Applied Microbiology and Biotechnology, 1995, 43(3): 559-665. doi: 10.1007/BF00218466
|
[32] |
RAJAGOPAL R, MASSE D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641. doi: 10.1016/j.biortech.2013.06.030
|
[33] |
SHI X, LIN J E, ZUO J E, et al. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Journal of Environmental Sciences-China, 2017, 55: 49-57. doi: 10.1016/j.jes.2016.07.006
|
[34] |
WANG Q H, KUNINOBU M, OGAWA H I, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass & Bioenergy, 1999, 16(6): 407-416.
|
[35] |
HILL D T, COBB S A, BOLTE J P. Using volatile fatty-acid relationships to predict anaerobic digester failure[J]. Transactions of the ASAE, 1987, 30(2): 496-501. doi: 10.13031/2013.31977
|
[36] |
高树梅. 餐厨垃圾厌氧消化过程中氨氮耐受响应机制研究[D]. 无锡: 江南大学, 2015.
|
[37] |
李蕾. 餐厨垃圾厌氧消化过程失稳的动力学特征及微生物机理研究[D]. 重庆: 重庆大学, 2016.
|
[38] |
LE C, STUCKEY D C. Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion[J]. Water Research, 2017, 122: 10-16. doi: 10.1016/j.watres.2017.05.061
|
[39] |
詹瑜, 施万胜, 赵明星, 等. 高含固污泥厌氧消化中蛋白质转化规律[J]. 环境科学, 2018, 39(6): 2778-2785.
|
[40] |
PARK S, KIM M. Effect of ammonia on anaerobic degradation of amino acids[J]. KSCE Journal of Civil Engineering, 2015, 20(1): 129-136.
|
[41] |
WANG Q, KUNINOBU M, KAKIMOTO K, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment[J]. Bioresource Technology, 1999, 68(3): 309-313. doi: 10.1016/S0960-8524(98)00155-2
|
[42] |
WEIMER P J. End product yields from the extraluminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks[J]. Bioresource Technology, 2011, 102(3): 3254-3259. doi: 10.1016/j.biortech.2010.11.050
|
[43] |
YANG G, ZHANG P Y, ZHANG G M, et al. Degradation properties of protein and carbohydrate during sludge anaerobic digestion[J]. Bioresource Technology, 2015, 192: 126-130. doi: 10.1016/j.biortech.2015.05.076
|
[44] |
WIEGANT W, ZEEMAN G. The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes[J]. Agricultural Wastes, 1986, 16(4): 243-253. doi: 10.1016/0141-4607(86)90056-9
|
[45] |
HEJFELT A, ANGELIDAKI I. Anaerobic digestion of slaughterhouse by-products[J]. Biomass and Energy, 2009, 33(8): 1046-1054. doi: 10.1016/j.biombioe.2009.03.004
|
[46] |
SUN S, LIU T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere, 2003, 53(1): 43-52. doi: 10.1016/S0045-6535(03)00434-X
|
[47] |
HANSEN K H, ANGELIDAKI I, AHRING B K. Anaerobic digestion of swine manure: Inhibition by ammonia[J]. Water Research, 1998, 32(1): 1-12. doi: 10.1016/S0043-1354(97)00203-0
|
[48] |
ALBERTSON O E. Ammonia nitrogen and the anaerobic environment[J]. Journal Water Pollution Control Federation, 1961, 33(9): 978-995.
|
[49] |
BARAMPOUTI E M, MAI S T, VLYSSIDES A G. Dynamic modeling of the ratio volatile fatty acids/bicarbonate alkalinity in a UASB reactor for potato processing wastewater treatment[J]. Environmental Monitoring and Assessment, 2005, 110(1/2/3): 121-128.
|
[50] |
ZICKEFOOSE C, HAYES R. Anaerobic Sludge Digestion: Operations Manual[M]. Washington DC: Office of Water Program Operations, US Environmental Protection Agency, 1976.
|
[51] |
LI L, PENG X Y, WANG X M, et al. Anaerobic digestion of food waste: A review focusing on process stability[J]. Bioresoure Technology, 2018, 248: 20-28. doi: 10.1016/j.biortech.2017.07.012
|