[1] |
WAN R, ZHENG X, CHEN Y G, et al. Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2839-2847. doi: 10.1007/s00253-014-6155-z
|
[2] |
ZHANG Y M, WANG X C, CHENG Z, et al. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment[J]. Chemosphere, 2016, 144: 689-696. doi: 10.1016/j.chemosphere.2015.09.036
|
[3] |
浮海梅, 金云霄. 浅谈地下水硝酸盐污染[J]. 地下水, 2009, 31(3): 85-87. doi: 10.3969/j.issn.1004-1184.2009.03.028
|
[4] |
HAN D M, CURRELL M J, CAO G L. Deep challenges for China’s war on water pollution[J]. Environmental Pollution, 218: 1222-1233.
|
[5] |
LIU Y, ZHANG B G, TIAN C X, et al. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal[J]. Environmental Technology, 2015, 37(8): 1008-1017.
|
[6] |
MAILA Y A, EL-NAHAL I, AL-AGHA M R. Seasonal variations and mechanisms of groundwater nitrate pollution in the Gaza Strip[J]. Environmental Geology, 2004, 47(1): 84-90. doi: 10.1007/s00254-004-1136-7
|
[7] |
吴耀国. 地下水环境中反硝化作用[J]. 环境污染治理技术与设备, 2002, 3(3): 27-31.
|
[8] |
MAZUR L P, CECHINEL M A P, VILAR V J P, et al. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review[J]. Journal of Environmental Management, 2018, 223: 215-253.
|
[9] |
EPSZTEIN R, NIR O, LAHAV O, et al. Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme[J]. Chemical Engineering Journal, 2015, 279: 372-378. doi: 10.1016/j.cej.2015.05.010
|
[10] |
BELKADA F D, KITOUS O, DROUICHE N, et al. Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater[J]. Separation and Purification Technology, 2018, 204: 108-115. doi: 10.1016/j.seppur.2018.04.068
|
[11] |
CHEN Y X, ZHANG Y, CHEN G H. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater[J]. Water Research, 2003, 37(10): 2489-2495. doi: 10.1016/S0043-1354(03)00028-9
|
[12] |
GUO X J, YANG Z, DONG H Y, et al. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water[J]. Water Research, 2016, 88: 671-680. doi: 10.1016/j.watres.2015.10.045
|
[13] |
BELGHIT H, COLAS C, MOUVET C, et al. Liquid chromatography-high-resolution mass spectrometry for identifying aqueous chlordecone hydrate dechlorinated transformation products formed by reaction with zero-valent iron[J]. International Journal of Environmental Analytical Chemistry, 2015, 95(2): 93-105. doi: 10.1080/03067319.2014.994615
|
[14] |
张唯, 沈峥, 王晨璐, 等. 纳米零价铁的改性及其在废水处理中的应用综述[J]. 净水技术, 2016, 35(4): 23-30. doi: 10.3969/j.issn.1009-0177.2016.04.004
|
[15] |
修宗明, 全化民, 康海彦, 等. 铁屑去除酸法地浸采铀地下水中硝酸盐的试验研究[J]. 环境工程学报, 2007, 3(1): 37-40. doi: 10.3969/j.issn.1673-9108.2007.01.011
|
[16] |
李利, 王祥润. 纳米铁作为纳米材料对污染修复效能评述[J]. 中国资源综合利用, 2018, 36(8): 99-101. doi: 10.3969/j.issn.1008-9500.2018.08.033
|
[17] |
宋锡瑾, 宣锋, 王杰. 纳米氢氧化镁的制备[J]. 应用基础与工程科学学报, 2006, 14(4): 523-527. doi: 10.3969/j.issn.1005-0930.2006.04.009
|
[18] |
WU L M, LIAO L B, LV G C, et al. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon[J]. Journal of Hazardous Materials, 2013, 254-255: 277-283. doi: 10.1016/j.jhazmat.2013.03.009
|
[19] |
LIU G, ZHOU Y Q, LIU Z Y, et al. Efficient nitrate removal using micro-electrolysis with zero valent iron/activated carbon nanocomposite[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(12): 2942-2949.
|
[20] |
郑庆福, 王志民, 陈保国, 等. 制备生物炭的结构特征及炭化机理的XRD光谱分析[J]. 光谱学与光谱分析, 2016, 36(10): 3355-3359.
|
[21] |
李同燕, 李文奇, 胡伟武, 等. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
|
[22] |
李海莹, 王薇, 金朝晖, 等. 纳米铁的制备及其对污染地下水的脱硝研究[J]. 南开大学学报: 自然科学版, 2006, 39(1): 8-13.
|
[23] |
CHEN S S, HSU H D, LI C W. A new method to produce nanoscale iron for nitrate removal[J]. Journal of Nanoparticle Research, 2004, 6(6): 639-647. doi: 10.1007/s11051-004-6672-2
|
[24] |
RODRIGUEZ-MAROTO J M, GARCIA-HERRUZO F, GARCIA-RUBIO A, et al. Kinetics of the chemical reduction of nitrate by zero-valent iron[J]. Chemosphere, 2009, 74(6): 804-809. doi: 10.1016/j.chemosphere.2008.10.020
|
[25] |
SHI J L, YI S N, HE H L, et al. Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and ${\rm{NO}}_3^ - $ [J]. Chemical Engineering Journal, 2013, 230: 166-171. doi: 10.1016/j.cej.2013.06.088
|
[26] |
SONG Y J, SONG S F. Preparation, characterization, and kinetics of nanoscale iron in nitrate nitrogen removal from polluted water[J]. Toxicological & Environmental Chemistry, 2015, 97(3/4): 379-387.
|
[27] |
HWANG Y H, KIM D G, SHIN H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 144-150.
|
[28] |
CHOE S, CHANG Y Y, HWANG K Y, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron[J]. Chemosphere, 2000, 41(8): 1307-1311. doi: 10.1016/S0045-6535(99)00506-8
|
[29] |
PETCHAROEN K, SIRIVAT A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method[J]. Materials Science and Engineering B, 2012, 177(5): 421-427.
|
[30] |
RYU A, JEONG S W, JANG A, et al. Reduction of highly concentrated nitrate using nanoscale zero-valent iron: Effects of aggregation and catalyst on reactivity[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 128-135.
|