[1] |
WANG J L, ZHUAN R, CHU L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview[J]. Science of the Total Environment, 2019, 646: 1385-1397. doi: 10.1016/j.scitotenv.2018.07.415
|
[2] |
SZEKERES E, CHIRIAC C M, BARICZ A, et al. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas[J]. Environmental Pollution, 2018, 236: 734-744. doi: 10.1016/j.envpol.2018.01.107
|
[3] |
DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
|
[4] |
SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks[J]. Science of the Total Environment, 2019, 669: 785-797. doi: 10.1016/j.scitotenv.2019.03.162
|
[5] |
YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation[J]. Water Research, 2012, 46: 1301-1308. doi: 10.1016/j.watres.2011.12.035
|
[6] |
FIGUEROA R A, LEONARD A, MACKAY A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology, 2004, 38: 476-483.
|
[7] |
SHI Y J, WANG X H, QI Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011, 191: 103-109. doi: 10.1016/j.jhazmat.2011.04.048
|
[8] |
LI B, ZHANG T. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination[J]. Water Research, 2013, 47: 2970-2982. doi: 10.1016/j.watres.2013.03.001
|
[9] |
CHEN G, ZHAO L, DONG Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide[J]. Journal of Hazardous Materials, 2011, 193: 128-138. doi: 10.1016/j.jhazmat.2011.07.039
|
[10] |
KIM T H, KIM S D, KIM H Y, et al. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV[J]. Journal of Hazardous Materials, 2012, 227-228: 237-242. doi: 10.1016/j.jhazmat.2012.05.038
|
[11] |
MAROGA M V, HEQUET V, GRU Y, et al. Assessment of the efficiency of photocatalysis on tetracycline biodegradation[J]. Journal of Hazardous Materials, 2012, 209-210: 355-364. doi: 10.1016/j.jhazmat.2012.01.032
|
[12] |
AI C L, ZHOU D D, WANG Q, et al. Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation[J]. Solar Energy, 2015, 113: 34-42. doi: 10.1016/j.solener.2014.12.022
|
[13] |
HOSEINI M, SAFARI G H, KAMANI H, et al. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis[J]. Toxicological & Environmental Chemistry, 2013, 95: 1680-1689.
|
[14] |
PULICHARLA R, BRAR S K, ROUISSI T, et al. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication[J]. Ultrasonics Sonochemistry, 2017, 34: 332-342. doi: 10.1016/j.ultsonch.2016.05.042
|
[15] |
GUAN X, XU X, LU M, et al. Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis[J]. Energy Procedia, 2012, 17: 1655-1661. doi: 10.1016/j.egypro.2012.02.294
|
[16] |
冯雅丽, 张茜, 李浩然, 等. 铁炭微电解预处理高浓度高盐制药废水[J]. 环境工程学报, 2012, 6(11): 3855-3860.
|
[17] |
KANG M M, CHEN Q G, LI J J, et al. Preparation and study of a new type of Fe-C microelectrolysis filler in oil-bearing ballast water treatment[J]. Environmental Science and Pollution Research International, 2019, 26(11): 106739-10684.
|
[18] |
HAN Y, LI H, LIU M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170: 241-247. doi: 10.1016/j.seppur.2016.06.058
|
[19] |
AO L, XIA F, REN Y, et al. Enhanced nitrate removal by micro-electrolysis using Fe0 and surfactant modified activated carbon[J]. Chemical Engineering Journal, 2019, 357: 180-187. doi: 10.1016/j.cej.2018.09.071
|
[20] |
邓禺南, 陈炜鸣, 崔瑜旗, 等. 铁碳促进O3/H2O2体系深度处理准好氧矿化垃圾床渗滤液尾水中难降解有机物[J]. 环境科学学报, 2018, 38(11): 4371-4382.
|
[21] |
ATKINSON A J, APUL O G, SCHNEIDER O, et al. Nanobubble technologies offer opportunities to improve water treatment[J]. Accounts of Chemical Research, 2019, 52(5): 1196-1205.
|
[22] |
AZEVEDO A, ETCHEPARE R, CALGAROTO, et al. Aqueous dispersion of nanobubbles: Generation, properties and features[J]. Minerals Engineering, 2016, 94: 29-37. doi: 10.1016/j.mineng.2016.05.001
|
[23] |
刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010, 4(3): 585-589.
|
[24] |
CHU L B, XING X H, YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. doi: 10.1016/j.chemosphere.2007.03.014
|
[25] |
AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84: 1175-1180. doi: 10.1016/j.chemosphere.2011.05.054
|
[26] |
LI P, TAKAHASHI M, CHI B K. Degradation of phenol by the collapse of microbubbles[J]. Chemosphere, 2009, 75(10): 1371-1375. doi: 10.1016/j.chemosphere.2009.03.031
|
[27] |
张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589.
|
[28] |
ZHANG J, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201: 10-18. doi: 10.1016/j.seppur.2018.02.003
|
[29] |
贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
|
[30] |
YANG Z, MA Y, LIU Y, et al. Degradation of organic pollutants in nearneutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414. doi: 10.1016/j.cej.2017.01.042
|