[1] |
浦绍瑞, 钱红亮, 马春燕, 等. 畜禽粪便高温发酵与秸秆热化学处理工艺的耦合[J]. 化工学报, 2015, 66(6): 2220-2226.
|
[2] |
黎运红. 畜禽粪便资源化利用潜力研究[D]. 武汉: 华中农业大学, 2015.
|
[3] |
王成显, 张艺臻, 吴淑娜, 等. 含固率和电极间距对牛粪发酵产电性能的影响[J]. 环境工程学报, 2016, 10(1): 485-489. doi: 10.12030/j.cjee.20160180
|
[4] |
仇焕广, 井月, 廖绍攀, 等. 我国畜禽污染现状与治理政策的有效性分析[J]. 中国环境科学, 2013, 33(12): 2268-2273.
|
[5] |
郑苇, 刘淑玲, 靳俊平. 不同清粪工艺下猪、牛、鸡养殖场粪水和污水厌氧消化技术探讨[J]. 环境卫生工程, 2017, 25(5): 58-60. doi: 10.3969/j.issn.1005-8206.2017.05.018
|
[6] |
张庆东, 耿如林, 戴晔. 规模化猪场清粪工艺比选分析[J]. 中国畜牧兽医, 2013, 40(2): 232-235. doi: 10.3969/j.issn.1671-7236.2013.02.057
|
[7] |
刘安芳, 阮蓉丹, 李厅厅, 等. 猪舍内粪污废弃物和有害气体减量化工程技术研究[J]. 农业工程学报, 2019, 35(15): 200-210. doi: 10.11975/j.issn.1002-6819.2019.15.025
|
[8] |
EI-MASHAD H M, LOON W K P, ZEEMAN G, et al. Rheological properties of dairy cattle manure[J]. Bioresource Technology, 2005, 96(5): 531-535. doi: 10.1016/j.biortech.2004.06.020
|
[9] |
WU B, CHEN S. CFD simulation of non-Newtonian fluid flow in anaerobic digesters[J]. Biotechnology and Bioengineering, 2008, 99(3): 700-711. doi: 10.1002/bit.21613
|
[10] |
石惠娴, 吕涛, 朱洪光, 等. 猪粪流变特性与表观黏度模型研究[J]. 农业机械学报, 2014, 45(2): 188-193. doi: 10.6041/j.issn.1000-1298.2014.02.031
|
[11] |
LANDRY H, LAGUE C, ROBERGE M. Physical and rheological properties of manure products[J]. Applied Engineering in Agriculture, 2004, 20(3): 277-288. doi: 10.13031/2013.16061
|
[12] |
刘刈, 邓良伟, 王智勇. 几种厌氧消化原料的流变特性及其影响因素[J]. 农业工程学报, 2009, 25(8): 204-209. doi: 10.3969/j.issn.1002-6819.2009.08.037
|
[13] |
王少勇, 吴爱祥, 阮竹恩, 等. 基于环管实验的膏体流变特性及影响因素[J]. 中南大学学报, 2018, 49(10): 2519-2525.
|
[14] |
刘晓辉, 吴爱祥, 姚建, 等. 膏体尾矿管内滑移流动阻力特性及其近似计算方法[J]. 中国有色金属学报, 2019, 29(10): 2403-2410.
|
[15] |
姚玉英, 陈常贵, 柴诚敬. 化工原理[M]. 天津: 天津大学出版社, 2004.
|
[16] |
REID J D, CAMPANELLA O H, CORVALAN C M, et al. The influence of power-law rheology on flow distributions in coathanger manifolds[J]. Polymer Engineer and Science, 2003, 43(3): 693-703. doi: 10.1002/pen.10057
|
[17] |
张严之, 王卉, 张翼, 等. 高含固污泥中影响因素对流变特性的影响[J]. 环境工程学报, 2016, 10(12): 7255-7259. doi: 10.12030/j.cjee.201507101
|
[18] |
HU L, XU H, LI M, et al. Liquid jet formation during a suspended liquid suction process[J/OL]. [2020-03-01]. Experimental Thermal and Fluid Science, 2019: https://doi.org/10.1016/j.expthermflusci.2019.109952.
|
[19] |
PÉREZ-GARCÍA J, GARCÍA A, HERRERO-MARTÍN R, et al. Experimental correlations on critical Reynolds numbers and friction factor in tubes with wire-coil inserts in laminar, transitional and low turbulent flow regimes[J]. Experimental Thermal & Fluid Science, 2018, 91: 64-79.
|
[20] |
HONG C, NAKAMURA T, ASAKO Y, et al. Semi-local friction factor of turbulent gas flow through rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 98: 643-649. doi: 10.1016/j.ijheatmasstransfer.2016.02.080
|
[21] |
OGUGBUE C C. Laminar and turbulent friction factors for annular flow of drag-reducing polymer solutions in coiled-tubing operations[J]. SPE Drilling & Completion, 2011, 26(4): 506-518.
|
[22] |
王杰祥, 张翼, 孙颖婷, 等. 井下注聚管径对聚合物溶液流动影响[J]. 中国矿业, 2019, 28(5): 57-61.
|
[23] |
YILMAZ N A, TESTIK F Y, CHOWDHURY MIJANUR R. Laminar bottom gravity currents: Friction factor-Reynolds number relationship[J]. Journal of Hydraulic Research, 2014, 52(4): 545-558. doi: 10.1080/00221686.2013.878402
|