[1] JANSSEN A J H, LENS P N L, STAMS A J M, et al. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification[J]. World Pulp & Paper, 2010, 407(4): 1333-1343.
[2] LIU B, WU W, ZHAO Y, et al. Effects of ethanol/${\rm{SO}}_4^{2 - }$ ratio and pH on mesophilic sulfate reduction in UASB reactors[J]. African Journal of Microbiology Research, 2010, 4(21): 2215-2222.
[3] ISA M H, ANDERSON G K. Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion[J]. Process Biochemistry, 2005, 40(6): 2079-2089. doi: 10.1016/j.procbio.2004.07.025
[4] LIU Y, ZHANG Y, NI B J. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (Ⅲ) addition[J]. Environmental Science & Technology, 2015, 49(4): 2123-2131.
[5] 徐中慧, 李东伟, 王克浩, 等. 两相厌氧反应器相分离实验研究[J]. 环境工程学报, 2010, 4(12): 2786-2788.
[6] 苗英霞, 王静, 张雨山. 含盐污泥厌氧消化过程中金属离子对硫化氢产气率的抑制作用[J]. 工业水处理, 2010, 30(3): 16-19.
[7] CHEN J L, ORTIZ R, STEELE T W J, et al. Toxicants inhibiting anaerobic digestion: A review[J]. Biotechnology Advances, 2014, 32(8): 1523-1534. doi: 10.1016/j.biotechadv.2014.10.005
[8] VISSER A, POL W H, LETTINGA G. Competition of methanogenic and sulfidogenic bacteria[J]. Water Science & Technology, 1996, 33(3): 99-110.
[9] OFLAHERTY V, MAHONY T. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic, and sulfate-reducing bacteria[J]. Process Biochemistry, 1998, 33(5): 555-569. doi: 10.1016/S0032-9592(98)00018-1
[10] HAO T W, XIANG P Y, MACKEY H R, et al. A review of biological sulfate conversions in wastewater treatment[J]. Water Research, 2014, 65: 1-21. doi: 10.1016/j.watres.2014.06.043
[11] BLOTEVOGEL K H, FISCHER U, MOCHA M, et al. Methanobacterium thermoalcaliphilum spec. nov.: A new moderately alkaliphilic and thermophilic autotrophic methanogen[J]. Archives of Microbiology, 1985, 142(3): 211-217. doi: 10.1007/BF00693392
[12] NAKATSUGAWA N, HORIKOSHI K. Studies of methanogens which grow in extreme environments screening, isolation, identification and growth characteristics of novel super-methanogens[J]. Kagaku Kogaku Ronbunshu, 1991, 17(3): 655-666. doi: 10.1252/kakoronbunshu.17.655
[13] THAKKER C D, RANADE D R. An alkalophilic Methanosarcina isolated from Lonar crater[J]. Current Science, 2002, 82(4): 455-458.
[14] 刘娜. 硫酸盐还原菌的分类鉴定及抑制规律研究[D]. 武汉: 华中科技大学, 2012.
[15] 蒋永荣, 刘可慧, 刘成良, 等. UASB处理硫酸盐有机废水的启动[J]. 环境工程学报, 2014, 8(9): 3572-3576.
[16] MIZUNO O, LI Y Y, NOIKE T. Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate[J]. Water Science & Technology, 1994, 30(8): 45-54.
[17] 陈业钢, 祁佩时, 刘云芝, 等. 硫酸盐对抗生素废水厌氧生物处理的影响[J]. 中国给水排水, 2002, 18(6): 18-22.
[18] 殷增杰, 薛嵘, 臧立华, 等. 高浓度硫酸根废水厌氧系统处理效果及产气研究[J]. 济南大学学报(自然科学版), 2016, 30(4): 293-297.
[19] HU Y, JING Z, SUDO Y, et al. Effect of influent COD/${\rm{SO}}_4^{2 - }$ ratios on UASB treatment of a synthetic sulfate-containing wastewater[J]. Chemosphere, 2015, 130: 24-33. doi: 10.1016/j.chemosphere.2015.02.019
[20] 李俊, 李燕, 罗干, 等. 两相厌氧工艺处理硫酸盐有机废水研究进展[J]. 工业用水与废水, 2016, 47(3): 6-10.
[21] YUAN H, CHEN Y, ZHANG H, et al. Improved bioproduction of short-chain fatty acids (SCFAS) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40(6): 2025.
[22] LU X, ZHEN G, NI J, et al. Effect of influent COD/${\rm{SO}}_4^{2 - }$ ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor[J]. Bioresource Technology, 2016, 214: 175-183. doi: 10.1016/j.biortech.2016.04.100
[23] CHEN Y, HE S, ZHOU M, et al. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Frontiers of Environmental Science & Engineering, 2018, 12(5): 13.
[24] LI Y Y, LAM S, FANG H H P. Interactions between methanogenic, sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate[J]. Water Research, 1996, 30(7): 1555-1562. doi: 10.1016/0043-1354(95)00316-9
[25] JEONG T Y, CHUNG H K, YEOM S H, et al. Analysis of methane production inhibition for treatment of sewage sludge containing sulfate using an anaerobic continuous degradation process[J]. Korean Journal of Chemical Engineering, 2009, 26(5): 1319-1322. doi: 10.1007/s11814-009-0229-0
[26] RIVIÈRE, DELPHINE, DESVIGNES V, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. ISME Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2
[27] DAI X, HU C, ZHANG D, et al. A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2017, 243: 914. doi: 10.1016/j.biortech.2017.07.036
[28] LI W, WANG C, TIAN Z, et al. Anaerobic treatment of p-acetamidobenzene sulfonyl chloride (p-ASC)-containing wastewater in the presence or absence of ethanol in a UASB reactor[J]. International Biodeterioration & Biodegradation, 2015, 98: 81-88.
[29] JIANG Y, LI H, QIN Y, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105.
[30] LU X, NI J, ZHEN G, et al. Response of morphology and microbial community structure of granules to influent COD/${\rm{SO}}_4^{2 - }$ ratios in an upflow anaerobic sludge blanket (UASB) reactor treating starch wastewater[J]. Bioresource Technology, 2018, 256: 456-465. doi: 10.1016/j.biortech.2018.02.055
[31] OMIL F, OUDE S, LENS P, et al. Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulphate reducing and methanogenic bacteria in an acetate fed UASB reactor[J]. Bioresource Technology, 1997, 60(2): 113-122. doi: 10.1016/S0960-8524(97)00014-X
[32] LU X, ZHEN G, NI J, et al. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 2017, 108(1): 137-150.