[1] GRATTIERI M, MINTEER S D. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives[J]. Bioelectrochemistry, 2018, 120: 127-137. doi: 10.1016/j.bioelechem.2017.12.004
[2] GUO F, FU G, ZHANG Z, et al. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells[J]. Bioresource Technology, 2013, 136: 425-430. doi: 10.1016/j.biortech.2013.02.116
[3] GAO F, PENG Y, LI C, et al. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater[J]. Science of the Total Environment, 2018, 640-641: 943-953. doi: 10.1016/j.scitotenv.2018.05.380
[4] 孙鹏飞. 皮革废水处理方法及清洁化生产[J]. 皮革与化工, 2012, 29(6): 28-30. doi: 10.3969/j.issn.1674-0939.2012.06.010
[5] TENDER L M, REIMERS C E, STECHER H R, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8): 821-825. doi: 10.1038/nbt716
[6] LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14): 5488-5493.
[7] TREMOULI A, MARTINOS M, LYBERATOS G. The effects of salinity, pH and temperature on the performance of a microbial fuel cell[J]. Waste and Biomass Valorization, 2017, 8(6): 2037-2043. doi: 10.1007/s12649-016-9712-0
[8] 黄志鹏. 微生物燃料电池处理高盐含氮废水研究[D]. 杭州: 浙江大学, 2019.
[9] 黄浩斌, 成少安. 单室空气阴极微生物燃料电池硝酸根去除系统的建立和性能研究[J]. 环境科学学报, 2019, 39(6): 1739-1747.
[10] PISHGAR R, DOMINIC J A, TAY J H, et al. Pilot-scale investigation on nutrient removal characteristics of mineral-rich aerobic granular sludge: Identification of uncommon mechanisms[J]. Water Research, 2020, 168: 115151. doi: 10.1016/j.watres.2019.115151
[11] YANG N, ZHAN G, LI D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. doi: 10.1016/j.cej.2018.08.161
[12] ZHANG L, FU G, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012
[13] 黄菲菲. 异养硝化-好氧反硝化菌的筛选与脱氮性能研究[D]. 南京: 南京理工大学, 2013.
[14] 乔龙胜. 不同底物对微生物燃料电池产电影响及电能收集研究[D]. 天津: 天津工业大学, 2017.
[15] LIU H, CHENG S, LOGAN B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environmental Science & Technology, 2005, 39(2): 658-662.
[16] LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38(14): 4040-4046.
[17] 詹亚力, 王琴, 张佩佩, 等. 微生物燃料电池影响因素及作用机理探讨[J]. 高等学校化学学报, 2008(1): 144-148. doi: 10.3321/j.issn:0251-0790.2008.01.028
[18] 郭亚婵. SBBR处理低盐废水效果及同步硝化反硝化效能研究[D]. 青岛: 中国海洋大学, 2014.
[19] LAN M, LI M, LIU J, et al. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system[J]. Bioresource Technology, 2018, 270: 120-128. doi: 10.1016/j.biortech.2018.09.011
[20] HE T, GUAN W, LUAN Z, et al. Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1479-1488. doi: 10.1007/s00253-015-7072-5
[21] WANG W, CAO L, TAN H, et al. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria[J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9699-9707. doi: 10.1007/s00253-016-7800-5
[22] MIURA Y, WATANABE Y, OKABE S. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology, 2007, 41(22): 7787-7794.
[23] HUANG C, LI Z, CHEN F, et al. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process[J]. Bioresource Technology, 2015, 197: 227-234. doi: 10.1016/j.biortech.2015.08.019
[24] XIA Z, WANG Q, SHE Z, et al. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process[J]. Science of the Total Environment, 2019, 697: 134047. doi: 10.1016/j.scitotenv.2019.134047
[25] WANG H, BISWAL B K, MAO Y, et al. Multiple-cycle operation of sulphur-cycle-enhanced biological phosphorus removal to maintain stable performance at high temperatures[J]. Bioresource Technology, 2019, 289: 121736. doi: 10.1016/j.biortech.2019.121736
[26] LI W, NIU Q, WU J, et al. Enhanced anaerobic performance and SMD process in treatment of sulfate and organic S-rich TMBA manufacturing wastewater by micro-electric field-zero valent iron-UASB[J]. Journal of Hazardous Materials, 2019, 379: 120695. doi: 10.1016/j.jhazmat.2019.05.088
[27] LAHME S, ENNING D, CALLBECK C M, et al. Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion[J]. Applied and Environmental Microbiology, 2019, 85(3): 1-12.
[28] DONG H, JIANG X, SUN S, et al. A cascade of a denitrification bioreactor and an aerobic biofilm reactor for heavy oil refinery wastewater treatment[J]. RSC Advances, 2019, 9(13): 7495-7504. doi: 10.1039/C8RA10510C
[29] 刘雪洁. MBR中异养硝化-好氧反硝化脱氮性能的研究[D]. 大连: 大连理工大学, 2014.
[30] XIE B, LIU B, YI Y, et al. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process[J]. Bioresource Technology, 2016, 207: 109-117. doi: 10.1016/j.biortech.2016.01.090
[31] YANG J, WANG Y, CHEN H, et al. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 2019, 274: 56-64. doi: 10.1016/j.biortech.2018.10.052
[32] PAN Z, ZHOU J, LIN Z, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726
[33] JIANG Q, SONG X, LIU J, et al. Enhanced nutrients enrichment and removal from eutrophic water using a self-sustaining in situ photomicrobial nutrients recovery cell (PNRC)[J]. Water Research, 2019, 167: 115097. doi: 10.1016/j.watres.2019.115097
[34] LIU J, ZHANG P, LI H, et al. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community[J]. Bioresource Technology, 2018, 250: 110-116. doi: 10.1016/j.biortech.2017.11.026
[35] WAN C, YANG X, LEE D, et al. Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor[J]. Bioresource Technology, 2014, 152: 1-6. doi: 10.1016/j.biortech.2013.10.112
[36] YIN S, LI J, DONG H, et al. Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Fe(III) addition: Nitrogen shock loading and community structure[J]. Bioresource Technology, 2019, 287: 121405. doi: 10.1016/j.biortech.2019.121405
[37] 王威. 海水循环水养殖系统中生物滤料的微生物挂膜与水处理效果研究[D]. 青岛: 中国海洋大学, 2012.
[38] KAMARISIMA, MIYANAGA K, TANJI Y. The utilization of aromatic hydrocarbon by nitrate- and sulfate-reducing bacteria in single and multiple nitrate injection for souring control[J]. Biochemical Engineering Journal, 2019, 143: 75-80. doi: 10.1016/j.bej.2018.12.006
[39] QIAN J, ZHANG M, JING R, et al. Thiosulfate as the electron acceptor in sulfur bioconversion-associated process (SBAP) for sewage treatment[J]. Water Research, 2019, 163: 114850. doi: 10.1016/j.watres.2019.07.017
[40] PLATEN H, TEMMES A, SCHINK B. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov[J]. Archives of Microbiology, 1990, 154(4): 355-361. doi: 10.1007/BF00276531
[41] LIU J, WANG X, WANG Z, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater[J]. Water Research, 2017, 110: 74-82. doi: 10.1016/j.watres.2016.12.012
[42] WU M, XU X, LU K, et al. Effects of the presence of nanoscale zero-valent iron on the degradation of polychlorinated biphenyls and total organic carbon by sediment microbial fuel cell[J]. Science of the Total Environment, 2019, 656: 39-44. doi: 10.1016/j.scitotenv.2018.11.326
[43] HUANG H, BISWAL B K, CHEN G, et al. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community[J]. Bioresource Technology, 2020, 297: 122396. doi: 10.1016/j.biortech.2019.122396