[1] |
ZHAO F L, YANG W D, ZENG Z, et al. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water[J]. Biomass and Bioenergy, 2012, 42: 212-218. doi: 10.1016/j.biombioe.2012.04.003
|
[2] |
韩永和, 李敏. 植物-微生物联合修复技术治理水体富营养化[J]. 水处理技术, 2012, 38(3): 1-6. doi: 10.3969/j.issn.1000-3770.2012.03.001
|
[3] |
ZHU L D, LI Z H, TARJA K. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area[J]. Ecological Engineering, 2011, 37(10): 1460-1466. doi: 10.1016/j.ecoleng.2011.03.010
|
[4] |
GUPTA P, ROY S, MAHINDRAKAR A B. Treatment of water using water hyacinth, water lettuce and vetiver grass: A review[J]. Resources & Environment, 2012, 2(5): 202-215.
|
[5] |
XU X G, ZHOU Y W, HAN R M, et al. Eutrophication triggers the shift of nutrient absorption pathway of submerged macrophytes: Implications for the phytoremediation of eutrophic waters[J]. Journal of Environmental Management, 2019, 239: 376-384. doi: 10.1016/j.jenvman.2019.03.069
|
[6] |
TING W H T, TAN I A W, SAIIEH S F, et al. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review[J]. Journal of Water Process Engineering, 2018, 22: 239-249. doi: 10.1016/j.jwpe.2018.02.011
|
[7] |
LU B, XU Z S, LI J G, et al. Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural rivers[J]. Ecological Engineering, 2018, 110: 18-26. doi: 10.1016/j.ecoleng.2017.09.016
|
[8] |
WANG C, ZHENG S S, WANG P F, et al. Effects of vegetations on the removal of contaminants in aquatic environments: A review[J]. Journal of Hydrodynamics, 2014, 26: 497-511. doi: 10.1016/S1001-6058(14)60057-3
|
[9] |
张贵龙, 赵建宁, 刘红梅, 等. 不同水生植物对富营养化水体无机氮吸收动力学特征[J]. 湖泊科学, 2013, 25(2): 221-226. doi: 10.3969/j.issn.1003-5427.2013.02.007
|
[10] |
李琳, 岳春雷, 张华, 等. 不同沉水植物净水能力与植株体细菌群落组成相关性[J]. 环境科学, 2019, 40(11): 4962-4970.
|
[11] |
赵梦云, 熊家晴, 郑于聪, 等. 植物收割对人工湿地中污染物去除的长期影响[J]. 水处理技术, 2019, 45(11): 112-116.
|
[12] |
YANG L H, EDWARDS K F, BYRNES J E, et al. A meta-analysis of resource pulse-consumer interactions[J]. Ecological Monographs, 2010, 80(1): 125-151. doi: 10.1890/08-1996.1
|
[13] |
BARYA M P, GUPTA D, THAKUR T K, et al. Phytoremediation performance of Acorus calamus and Canna indica for the treatment of primary treated domestic sewage through vertical subsurface flow constructed wetlands: A field-scale study[J]. Water Practice and Technology, 2020, 15(2): 528-539. doi: 10.2166/wpt.2020.042
|
[14] |
QIN H J, ZHANG Z Y, LIU M H, et al. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce[J]. Ecological Engineering, 2016, 95: 753-762. doi: 10.1016/j.ecoleng.2016.07.022
|
[15] |
EPSTEIN E, HAGEN C E. A kinetic study of the absorption of alkaline cations by barley roots[J]. Plant Physiology, 1952, 27(3): 457-474. doi: 10.1104/pp.27.3.457
|
[16] |
张熙灵, 王立新, 刘华民, 等. 芦苇、香蒲和藨草3种挺水植物的养分吸收动力学[J]. 生态学报, 2014, 34(9): 2238-2245.
|
[17] |
WU Q, HU Y, LI S Q, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement[J]. Bioresource Technology, 2016, 211: 451-456. doi: 10.1016/j.biortech.2016.03.113
|
[18] |
GAO H L, QIAN X, WU H F, et al. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body: A case study of Gonghu Bay, Lake Taihu[J]. Ecological Engineering, 2017, 102: 15-23. doi: 10.1016/j.ecoleng.2017.01.013
|
[19] |
谢静, 吕锡武, 李洁. 6种湿地植物吸收污水中氮和磷的动力学[J]. 环境工程学报, 2016, 10(8): 4067-4072. doi: 10.12030/j.cjee.201503043
|
[20] |
LI J H, YANG X Y, WANG Z F, et al. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology, 2015, 179: 1-7. doi: 10.1016/j.biortech.2014.11.053
|
[21] |
HOAGLAND D R, ARNON D I. The water culture methods for growing plants without soil[J]. Circular California Agricultural Experiment Station, 1950, 347: 357-359.
|
[22] |
蒋廷惠, 郑绍建, 石锦芹, 等. 植物吸收养分动力学研究中的几个问题[J]. 植物营养与肥料学报, 1995(2): 11-17. doi: 10.11674/zwyf.1995.0202
|
[23] |
王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002, 18(5): 47-49. doi: 10.3969/j.issn.1002-6002.2002.05.018
|
[24] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[25] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
[26] |
ZHANG Z H, RENGEL Z, MENEY K. Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectus validus[J]. Aquatic Botany, 2009, 91: 71-74. doi: 10.1016/j.aquabot.2009.02.002
|
[27] |
金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161.
|
[28] |
王宇通, 邵新庆, 黄欣颖, 等. 植物根系氮吸收过程的研究进展[J]. 草业科学, 2010, 27(7): 105-111. doi: 10.3969/j.issn.1001-0629.2010.07.020
|
[29] |
孙向辉, 李力. 水体富营养化及其植物修复技术研究进展[J]. 安徽农业科学, 2014, 42(18): 5902-5905. doi: 10.3969/j.issn.0517-6611.2014.18.071
|
[30] |
王沛芳, 王超, 王晓蓉, 等. 苦草对不同浓度氮净化效果及其形态转化规律[J]. 环境科学, 2008, 29(4): 890-895. doi: 10.3321/j.issn:0250-3301.2008.04.008
|
[31] |
LIU J K, LIU J L, ZHANG R, et al. Impacts of aquatic macrophytes configuration modes on water quality[J]. Water Science and Technology: A journal of the International Association on Water Pollution Research, 2014, 69(2): 253-261. doi: 10.2166/wst.2013.573
|
[32] |
常素云, 赵静静, 刘小川, 等. 挺水植物与沉水植物组配对北大港水库水质的影响[J]. 水资源保护, 2014, 30(5): 38-43.
|