[1] |
吴迪. (生物)电化学阴阳两极耦合实现焦化废水同步除碳脱氮的研究[D]. 广州: 华南理工大学, 2019.
|
[2] |
WU Z, ZHU W, LIU Y, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen[J]. Chemosphere, 2020, 246: 125703. doi: 10.1016/j.chemosphere.2019.125703
|
[3] |
ZHANG T, LIU Y, YANG L, et al. Ti-Sn-Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system[J]. Journal of Cleaner Production, 2020, 258: 120273. doi: 10.1016/j.jclepro.2020.120273
|
[4] |
PAN J, MA J, WU H, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 2019, 150: 216-224. doi: 10.1016/j.watres.2018.11.070
|
[5] |
YANG W, WANG J, HUA M, et al. Characterization of effluent organic matter from different coking wastewater treatment plants[J]. Chemosphere, 2018, 203: 68-75. doi: 10.1016/j.chemosphere.2018.03.167
|
[6] |
ZHU S, WU H, WU C, et al. Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system[J]. Water Research, 2019, 164: 114963. doi: 10.1016/j.watres.2019.114963
|
[7] |
SUN G, ZHANG Y, GAO Y, et al. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: Performance, mechanism, and full-scale application[J]. Water Research, 2020, 173: 115517. doi: 10.1016/j.watres.2020.115517
|
[8] |
RYU B, KIM J, HAN J, et al. Evaluation of an electro-flotation-oxidation process for harvesting bio-flocculated algal biomass and simultaneous treatment of residual pollutants in coke wastewater following an algal-bacterial process[J]. Algal Research, 2018, 31: 497-505. doi: 10.1016/j.algal.2017.06.012
|
[9] |
DING J, WEI L, HUANG H, et al. Tertiary treatment of landfill leachate by an integrated electro-oxidation/electro-coagulation/electro-reduction process: Performance and mechanism[J]. Journal of Hazardous Materials, 2018, 351: 90-97. doi: 10.1016/j.jhazmat.2018.02.038
|
[10] |
GAO C, LIU L, YU T, et al. Development of a novel carbon-based conductive membrane with in-situ formed MnO2 catalyst for wastewater treatment in bio-electrochemical system (BES)[J]. Journal of Membrane Science, 2018, 549: 533-542. doi: 10.1016/j.memsci.2017.12.053
|
[11] |
丁为俊. 微生物燃料电池扩大化及实用化关键技术的研究[D]. 杭州: 浙江大学, 2017.
|
[12] |
GE Z, LI J, XIAO L, et al. Recovery of electrical energy in microbial fuel cells[J]. Environmental Science & Technology Letters, 2013, 1(2): 137-141.
|
[13] |
MARASSI R J, QUEIROZ L G, SILVA D C V R, et al. Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater[J]. Journal of Cleaner Production, 2020, 259: 120882. doi: 10.1016/j.jclepro.2020.120882
|
[14] |
RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298. doi: 10.1016/j.tibtech.2005.04.008
|
[15] |
LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
|
[16] |
XIA T, ZHANG X, WANG H, et al. Power generation and microbial community analysis in microbial fuel cells: A promising system to treat organic acid fermentation wastewater[J]. Bioresource Technology, 2019, 284: 72-79. doi: 10.1016/j.biortech.2019.03.119
|
[17] |
LI Y, SUN J, LIU L, et al. A composite cathode membrane with CoFe2O4-rGO/PVDF on carbon fiber cloth: Synthesis and performance in a photocatalysis-assisted MFC-MBR system[J]. Environmental Science: Nano, 2017, 4(2): 335-345. doi: 10.1039/C6EN00454G
|
[18] |
GAO C, LIU L, YANG F. Novel carbon fiber cathode membrane with Fe/Mn/C/F/O elements in bio-electrochemical system (BES) to enhance wastewater treatment[J]. Journal of Power Sources, 2018, 379: 123-133. doi: 10.1016/j.jpowsour.2018.01.037
|
[19] |
LI H, MA H, LIU T, et al. An excellent alternative composite modifier for cathode catalysts prepared from bacterial cellulose doped with Cu and P and its utilization in microbial fuel cell[J]. Bioresource Technology, 2019, 289: 121661. doi: 10.1016/j.biortech.2019.121661
|
[20] |
TIWARI B R, NOORI M T, GHANGREKAR M M. Carbon supported nickel-phthalocyanine/MnOx as novel cathode catalyst for microbial fuel cell application[J]. International Journal of Hydrogen Energy, 2017, 42(36): 23085-23094. doi: 10.1016/j.ijhydene.2017.07.201
|
[21] |
ZOU Y, LI J, FU Q, et al. Macroporous hollow nanocarbon shell-supported Fe-N catalysts for oxygen reduction reaction in microbial fuel cellss[J]. Electrochimica Acta, 2019, 320: 134590. doi: 10.1016/j.electacta.2019.134590
|
[22] |
SUN J, LIU L, YANG F. Successful bio-electrochemical treatment of nitrogenous mariculture wastewater by enhancing nitrogen removal via synergy of algae and cathodic photo-electro-catalysis[J]. Science of the Total Environment, 2020, 743: 140738. doi: 10.1016/j.scitotenv.2020.140738
|
[23] |
ZHANG Q, LIU L. A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid[J]. Bioresource Technology, 2020, 304: 122992. doi: 10.1016/j.biortech.2020.122992
|