[1] |
郑晓梅, 顾鑫生, 曲娜, 等. 基于中文期刊论文的汞污染防治技术的文献计量分析[J]. 环境工程学报, 2019, 13(6): 1502-1512. doi: 10.12030/j.cjee.201904006
|
[2] |
杨雨寒, 靳炜, 刘俐媛, 等. 基于SCI论文的汞污染防治领域的文献计量分析[J]. 环境工程学报, 2019, 13(6): 1488-1501.
|
[3] |
李永华, 王五一, 杨林生, 等. 汞的环境生物地球化学研究进展[J]. 地理科学进展, 2004, 23(6): 33-40. doi: 10.3969/j.issn.1007-6301.2004.06.004
|
[4] |
SANCHEZ F, MATTUS C H, MORRIS M I, et al. Use of a new leaching test framework for evaluating alternative Treatment processes for mercury-contaminated soils[J]. Environmental Engineering Science, 2002, 19(4): 251-269. doi: 10.1089/109287502760271562
|
[5] |
SYVERSEN T, KAUR P. The toxicology of mercury and its compounds[J]. Journal of Trace Elements in Medicine and Biology, 2012, 26(4): 215-226. doi: 10.1016/j.jtemb.2012.02.004
|
[6] |
WALLSCHLlÄGER D, DESAI M V M, SPENGLER M, et al. Mercury speciation in floodplain soils and sediments along a contaminated river transect[J]. Journal of Environmental Quality, 1998, 27(5): 1034-1044.
|
[7] |
卢光华, 岳昌盛, 彭犇, 等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39(1): 1-12.
|
[8] |
冯钦忠, 陈扬, 李悦, 等. 膨润土类矿物脱汞吸附材料的制备及应用研究[J]. 环境保护科学, 2020, 4(1): 155-161.
|
[9] |
PAZ-FERREIRO J, LU H, FU S, et al. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review[J]. Solid Earth, 2014, 5(1): 65-75. doi: 10.5194/se-5-65-2014
|
[10] |
SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105(1): 47-82.
|
[11] |
孟凡彬, 孟军. 生物质炭化技术研究进展[J]. 生物质化学工程, 2016, 50(6): 61-66. doi: 10.3969/j.issn.1673-5854.2016.06.010
|
[12] |
袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779-785. doi: 10.3969/j.issn.1674-5906.2011.04.034
|
[13] |
刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009, 20(4): 977-982.
|
[14] |
赵伟, 丁弈君, 孙泰朋, 等. 生物质炭对汞污染土壤吸附钝化的影响[J]. 江苏农业科学, 2017, 45(11): 192-196.
|
[15] |
潘亚男, 陈灿, 王欣, 等. 凤眼莲源生物质炭对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6): 2342-2350.
|
[16] |
计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11): 207-213.
|
[17] |
TAN G, XU N, XU Y, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution[J]. Bioresource Technology, 2016: S0960852416304503.
|
[18] |
O'CONNOR D, PENG T, LI G H, et al. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil[J]. Science of the Total Environment, 2017, 621: 819-826.
|
[19] |
LIU P, PTACEK C J, ELENA K, et al. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy[J]. Journal of Hazardous Materials, 2018, 347: 114-122. doi: 10.1016/j.jhazmat.2017.12.051
|
[20] |
DUAN X L, YUAN C G, JING T T, et al. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation[J]. Fuel, 2019, 239: 830-840. doi: 10.1016/j.fuel.2018.11.017
|
[21] |
HONG D Y, ZHOU J S, HU C X, et al. Mercury removal mechanism of AC prepared by one-step activation with ZnCl2[J]. Fuel, 2019, 235: 326-335. doi: 10.1016/j.fuel.2018.07.103
|
[22] |
刘锋, 王琪, 黄启飞, 等. 固体废物浸出毒性浸出方法标准研究[J]. 环境科学研究, 2008, 21(6): 9-15.
|
[23] |
国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别: GB 5085.3-2007[S/OL]. (2012-01-04)[2020-04-10]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/wxfwjbffbz/200705/W020120104532752182600.pdf.
|
[24] |
化玉谨, 张敏英, 陈明, 等. 炼金区土壤中汞形态分布及其生物有效性[J]. 环境化学, 2015, 34(2): 234-240. doi: 10.7524/j.issn.0254-6108.2015.02.2014051906
|
[25] |
徐振涛, 梁鹏, 吴胜春, 等. 不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J]. 环境化学, 2019, 38(4): 832-841. doi: 10.7524/j.issn.0254-6108.2018060401
|
[26] |
王营军. 生物炭对土壤中汞的迁移及各形态汞含量变化的影响[D]. 阜新: 辽宁工程技术大学, 2019.
|