[1] 降林华, 段宁, 王允雨, 等. 我国硒污染分析与电解锰行业控制对策[J]. 环境科学与技术, 2011, 34(S2): 393-396.
[2] 肖利萍, 汪兵兵, 魏芳, 等. 新型碳源驯化的SRB去除酸性矿山废水中 $ {\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$最佳反应条件[J]. 环境工程学报, 2014, 8(5): 1705-1710.
[3] 徐师, 张大超, 吴梦, 等. 硫酸盐还原菌在处理酸性矿山废水中的应用[J]. 有色金属科学与工程, 2018, 9(1): 92-97.
[4] MOREAU J W, FOURNELLE J H, BANFIELD J F. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated natural wetland[J]. Frontiers in Microbiology, 2013, 4: 43-49.
[5] 国家环境保护局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国环境科学出版社, 1996: 1-18.
[6] ESPINOSA-ORTIZ E J, RENE E R, VAN HULLEBUSCH E D, et al. Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor[J]. International Biodeterioration & Biodegradation, 2015, 102: 361-369.
[7] ZHANG Y, KURODA M, ARAI S, et al. Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions[J]. Water Research, 2019, 154: 327-335. doi: 10.1016/j.watres.2019.01.059
[8] MAL J, NANCHARAIAH Y V, VAN HULLEBUSCH E D, et al. Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge[J]. Bioresource Technology, 2016, 206: 1-8. doi: 10.1016/j.biortech.2016.01.064
[9] TAN L C, NANCHARAIAH Y V, LU S, et al. Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an upflow anaerobic sludge bed reactor at pH 5.0[J]. Chemosphere, 2018, 211: 684-693. doi: 10.1016/j.chemosphere.2018.07.079
[10] ZENG T, RENE E R, HU Q, et al. Continuous biological removal of selenate in the presence of cadmium and zinc in UASB reactors at psychrophilic and mesophilic conditions[J]. Biochemical Engineering Journal, 2019, 141: 102-111. doi: 10.1016/j.bej.2018.10.013
[11] 杨龙辉, 冼萍, 郭孟飞, 等. 垃圾渗滤液对厌氧颗粒污泥稳定性的影响[J]. 环境工程学报, 2016, 10(8): 4092-4096. doi: 10.12030/j.cjee.201503238
[12] XU Y, WANG H, WANG Z, et al. Hydrocyclone breakage of activated sludge to exploit internal carbon sources and simultaneously enhance microbial activity[J]. Process Safety and Environmental Protection, 2018, 117: 651-659. doi: 10.1016/j.psep.2018.06.002
[13] XU N, TAN G, WANG H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. doi: 10.1016/j.ejsobi.2016.02.004
[14] LIU C, LI H, ZHANG Y, et al. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2016, 216: 87-94. doi: 10.1016/j.biortech.2016.05.048
[15] 张苒. 氢化物发生-原子荧光光度法测定水和废水中的总硒和四价硒[J]. 现代科学仪器, 2002(6): 45-48. doi: 10.3969/j.issn.1003-8892.2002.02.015
[16] 高雯雯, 戚欣, 吴良俊, 等. 氢化物发生-原子荧光光谱法测定恩施富硒土壤中的总硒[J]. 光谱实验室, 2011, 28(2): 661-664. doi: 10.3969/j.issn.1004-8138.2011.02.042
[17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[18] AYANO H, MIYAKE M, TERASAWA K, et al. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp strain RB for microbial synthesis of CdSe nanoparticles[J]. Journal of Bioscience and Bioengineering, 2014, 117(5): 576-581. doi: 10.1016/j.jbiosc.2013.10.010
[19] NANCHARAIAH Y V, SARVAJITH M, LENS P N L. Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor[J]. Water Research, 2018, 131: 131-141. doi: 10.1016/j.watres.2017.12.028
[20] GAO J, YANG J, YONG S, et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly(MMA-co-MQ)[J]. Journal of Rare Earths, 2018, 36(9): 946-953. doi: 10.1016/j.jre.2018.05.005
[21] MAL J, NANCHARAIAH Y V, BERA S, et al. Biosynthesis of CdSe nanoparticles by anaerobic granular sludge[J]. Environmental Science-Nano, 2017, 4(4): 824-833. doi: 10.1039/C6EN00623J
[22] LI D B, CHENG Y Y, WU C, et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm[J]. Scientific Reports, 2014, 4(1): 571-579.
[23] SURESH A K. Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 344-349. doi: 10.1016/j.saa.2014.04.021
[24] HUANG Z, LIU D, ZHAO H, et al. Performance and microbial community of aerobic dynamic membrane bioreactor enhanced by Cd(II)-accumulating bacterium in Cd(II)-containing wastewater treatment[J]. Chemical Engineering Journal, 2017, 317: 368-375. doi: 10.1016/j.cej.2017.02.083
[25] XUN Y, ZHANG X, CHAOLIANG C, et al. Comprehensive evaluation of soil near uranium tailings, Beishan City, China[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(6): 843-848. doi: 10.1007/s00128-018-2330-8
[26] CHEN Y, JIANG Y, HUANG H, et al. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments[J]. Science of the Total Environment, 2018, 637: 1400-1412.
[27] CHEN H, CHANG S. Impact of temperatures on microbial community structures of sewage sludge biological hydrolysis[J]. Bioresource Technology, 2017, 245: 502-510. doi: 10.1016/j.biortech.2017.08.143
[28] LAI C Y, YANG X, TANG Y, et al. Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor[J]. Environmental Science & Technology, 2014, 48(6): 3395-3402.
[29] LIU S J, XI B D, QIU Z P, et al. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals[J]. Science of the Total Environment, 2019, 651: 909-916. doi: 10.1016/j.scitotenv.2018.09.267
[30] KHOEI N S, LAMPIS S, ZONARO E, et al. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum[J]. New Biotechnology, 2017, 34: 1-11. doi: 10.1016/j.nbt.2016.10.002
[31] DOURADO M N, MARTINS P F, QUECINE M C, et al. Burkholderia sp SCMS54 reduces cadmium toxicity and promotes growth in tomato[J]. Annals of Applied Biology, 2013, 163(3): 494-507.
[32] DAI M, ZHOU G, NG H Y, et al. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress[J]. Journal of Environmental Management, 2019, 250: 109519. doi: 10.1016/j.jenvman.2019.109519
[33] LUSA M, HELP H, HONKANEN A P, et al. The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I: Effects on selenium(IV) uptake in Brassica oleracea[J]. Environmental Research, 2019, 177: 1-12.
[34] 易敏, 蒋亚蕾, 王双飞, 等. 两种造纸废水的厌氧内循环反应器内颗粒污泥菌群及结构特性的对照分析[J]. 造纸科学与技术, 2017, 36(3): 72-78.
[35] HUANG A, CHEN H, CHEN L, et al. Effects of Cd(II) and Cu(II) on microbial characteristics in 2-chlorophenol-degradation anaerobic bioreactors[J]. Journal of Environmental Sciences, 2008, 20(6): 745-752. doi: 10.1016/S1001-0742(08)62122-1
[36] ZENG T, RENE E R, ZHANG S, et al. Removal of selenate and cadmium by anaerobic granular sludge: EPS characterization and microbial community analysis[J]. Process Safety and Environmental Protection, 2019, 126: 150-159. doi: 10.1016/j.psep.2019.03.039