[1] KUMAR S, DESWAL S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater[J]. International Journal of Phytoremediation, 2020, 22(11): 1097-1109. doi: 10.1080/15226514.2020.1731729
[2] ZHAO Y, FANG Y, JIN Y, et al. Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: A pilot-scale comparison with water hyacinth[J]. Bioresource Technology, 2014, 163: 82-91. doi: 10.1016/j.biortech.2014.04.018
[3] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮, 磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161.
[4] 杨帆, 刘赢男, 焉志远, 等. 阿什河流域10种水生植物对水质氮磷的净化能力比较[J]. 环境科学研究, 2018, 31(4): 708-714.
[5] LIU Y, XU H, YU C, et al. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis[J]. Global Change Biology Bioenergy, 2021, 13(1): 70-82. doi: 10.1111/gcbb.12747
[6] CHENG J J, ANNE M S. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed[J]. Clean-Soil, Air, Water, 2009, 37(1): 17-26. doi: 10.1002/clen.200800210
[7] MKANDAWIRE M, DUDEL E G. Are Lemna spp. effective phytoremediation agents?[J]. Bioremediation, Biodiversity and Bioavailability, 2007, 1(1): 56-71.
[8] AN D, ZHOU Y, LI C, et al. Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18893-18899. doi: 10.1073/pnas.1910401116
[9] 韩玉洁, 杨琳, 赵玲, 等. 浮萍植物在水体净化中的研究及展望[J]. 生物学通报, 2016, 51(6): 4-7.
[10] IQBAL S. Duckweed aquaculture, potentials, possibilities and limitations, for combined wastewater treatment and animal feed production in developing countries[R]. Duebenderf, Switzerland: EAWAG/SANDEC, 1999.
[11] ZHAO Y, FANG Y, JIN Y, et al. Microbial community and removal of nitrogen via the addition of a carrier in a pilot-scale duckweed-based wastewater treatment system[J]. Bioresource Technology, 2015, 179: 549-558. doi: 10.1016/j.biortech.2014.12.037
[12] 种云霄, 胡洪营, 崔理华, 等. 浮萍植物在污水处理中的应用研究进展[J]. 环境污染治理技术与设备, 2006, 7(3): 14-18.
[13] 高寒, 贺振洲, 赵军, 等. 组合型生态浮岛原位修复重污染水体[J]. 环境工程学报, 2019, 13(12): 2884-2889. doi: 10.12030/j.cjee.201901095
[14] 刘丽香, 韩永伟, 刘辉, 等. 曝气技术对黑臭水体治理效果影响的研究进展[J]. 环境科学研究, 2020, 33(4): 932-939.
[15] 周高峰, 刘义青, 付永胜, 等. 微曝气强化生态浮床对污水中磷的净化效果[J]. 环境科学与技术, 2018, 41(10): 69-74.
[16] 聂玉华. 微曝气强化生态浮床对污水中氮元素的去除效果研究[D]. 成都: 西南交通大学, 2015.
[17] 宫志杰, 宋新山, 赵志淼, 等. 微曝气技术在强化人工湿地脱氮中的应用[J]. 环境科学与技术, 2017, 40(4): 132-135.
[18] ZHAO Y, FANG Y, JIN Y, et al. Effects of operation parameters on nutrient removal from wastewater and high-protein biomass production in a duckweed-based (Lemma aequinoctialis) pilot-scale system[J]. Water Science and Technology, 2014, 70(7): 1195-204. doi: 10.2166/wst.2014.334
[19] BEN-SHALOM M, SHANDALOV S, BRENNER A, et al. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds[J]. Water Science and Technology, 2014, 69(2): 350-357. doi: 10.2166/wst.2013.720
[20] 耿军军, 王亚宜, 张兆祥, 等. 污水生物脱氮革新工艺中强温室气体N2O的产生及微观机理[J]. 环境科学学报, 2010, 30(9): 1729-1738.
[21] 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016, 27(4): 1331-1340.
[22] 黄岁樑, 臧常娟, 杜胜蓝, 等. pH、溶解氧、叶绿素a之间相关性研究Ⅰ: 养殖水体[J]. 环境工程学报, 2011, 5(6): 1201-1208.
[23] 赵紫涵, 宋贵生, 赵亮. 秦皇岛外海夏季溶解氧与pH的变化特征分析[J]. 海洋学报, 2020, 42(10): 148-158.
[24] 洪铭媛, 李清彪, 邓旭. 废水厌氧(水解)-好氧生物组合处理工艺研究进展[J]. 化工环保, 2005, 25(2): 104-109. doi: 10.3969/j.issn.1006-1878.2005.02.007
[25] 耿显华. 大气CO2浓度升高对不同生活型水生植物的影响[D]. 武汉: 武汉大学, 2003.
[26] YAMAKAWA Y, JOG R, MORIKAWA M. Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed[J]. Plant Growth Regulation, 2018, 86(2): 287-296. doi: 10.1007/s10725-018-0428-y
[27] BALIBAN R C, ELIA J A, FLOUDAS C A, et al. Thermochemical conversion of duckweed biomass to gasoline, diesel, and jet fuel: Process synthesis and global optimization[J]. Industrial Engineering Chemistry Research, 2013, 52(33): 11436-11450. doi: 10.1021/ie3034703
[28] PAGLIUSO D, GRANDIS A, LAM E, et al. High saccharification, low lignin, and high sustainability potential make duckweeds adequate as bioenergy feedstocks[J]. Bioenergy Research, 2020, 28: 1-11. doi: 10.1007/s12155-020-10211-x
[29] APPENROTH K J, SREE K S, BOHM V, et al. Nutritional value of duckweeds (Lemnaceae) as human food[J]. Food Chemistry, 2017, 217: 266-273. doi: 10.1016/j.foodchem.2016.08.116
[30] KREIDER A N, PULIDO C R F, BRUNS M A, et al. Duckweed as an agricultural amendment: Nitrogen mineralization, leaching, and sorghum uptake[J]. Journal of Environmental Quality, 2019, 48(2): 469-475. doi: 10.2134/jeq2018.05.0207
[31] 朱新景, 张凡, 王星星, 等. 浮萍的药理作用研究进展[J]. 中医药导报, 2020, 360(14): 32-36.
[32] SMITH B. Harvesting duckweed by skimming[D]. Raleigh: North Carolina State University, 2003.
[33] 恽文荣, 陈玉荣, 李炳堂. 一种便携式浮萍收集装置的介绍[J]. 工程技术(引文版), 2016(3): 13.
[34] PENG J, WANG B, SONG Y, et al. Modeling N transformation and removal in a duckweed pond: Model development and calibration[J]. Ecological Modelling, 2007, 206(1): 147-152.
[35] MOHEDANO R A, COSTA R H R, TAVARES F A, et al. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds[J]. Bioresource Technology, 2012, 112(5): 98-104.
[36] 潘俊, 孙舶洋, 魏炜, 等. 微纳米曝气-生态浮岛联合技术处理氮磷污染水体[J]. 环境工程, 2020, 38(5): 49-53.
[37] 荣宏伟, 彭永臻, 张朝升, 等. 曝气量对SBBR生物除磷的影响研究[J]. 中国给水排水, 2008, 24(5): 72-76. doi: 10.3321/j.issn:1000-4602.2008.05.018