[1] BARBANO E P, DE OLIVEIRA G M, DE CARVALHO M F, et al. Copper–tin electrodeposition from an acid solution containing EDTA added[J]. Surface & Coatings Technology, 2014, 240: 14-22.
[2] 别旭峰. 微电解和高级氧化工艺处理Cu-EDTA的效能及机理[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[3] 程帅龙, 林亲铁, 肖荣波, 等. 铜基生物炭活化过硫酸钠处理废水中EDTA-Cu[J]. 环境工程学报, 2020, 14(12): 3298-3307. doi: 10.12030/j.cjee.202001152
[4] ZENG H B, LIU S S, CHAI B Y, et al. Enhanced photoelectrocatalytic decomplexation of Cu-EDTA and Cu recovery by persulfate activated by UV and cathodic reduction[J]. Environmental Science & Technology, 2016, 50(12): 6459-6466.
[5] HUANG X F, XU Y, SHAN C, et al. Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways[J]. Chemical Engineering Journal, 2016, 299: 23-29. doi: 10.1016/j.cej.2016.04.044
[6] LI L H, HUANG Z P, FAN X X, et al. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochimica Acta, 2017, 231: 354-362. doi: 10.1016/j.electacta.2017.02.072
[7] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理: 基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[8] HUANG X F, WANG Y, LI X C, et al. Autocatalytic decomplexation of Cu(II)-EDTA and simultaneous removal of aqueous Cu(II) by UV chlorine[J]. Environmental Science & Technology, 2019, 53: 2036-2044.
[9] ZHANG C, JIANG Y H, LI Y L, et al. Three-dimensional electrochemical process for wastewater treatment: A general review[J]. Chemical Engineering Journal, 2013, 228: 455-467. doi: 10.1016/j.cej.2013.05.033
[10] SUN Y J, LI P, ZHENG H L, et al. Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3 particle electrodes with a three-dimensional reactor[J]. Chemical Engineering Journal, 2017, 308: 1233-1242. doi: 10.1016/j.cej.2016.10.072
[11] 王兵, 舒帮云, 任宏洋, 等. 填充粒子对三维电极处理MDEA污水的影响[J]. 环境工程学报, 2017, 11(1): 205-210. doi: 10.12030/j.cjee.201601141
[12] LI Y Z, JIANG Y P, WANG T J, et al. Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode[J]. Separation and Purification Technology, 2017, 172: 415-421. doi: 10.1016/j.seppur.2016.08.043
[13] ZHANG T T, LIU Y J, YANG L, et al. Ti–Sn–Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system[J]. Journal of Cleaner Production, 2020, 258: 120273. doi: 10.1016/j.jclepro.2020.120273
[14] ZHAN J H, LI Z X, YU G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes[J]. Separation and Purification Technology, 2019, 208: 12-18. doi: 10.1016/j.seppur.2018.06.030
[15] SONG X Z, HUANG D, ZHANG L, et al. Electrochemical degradation of the antibiotic chloramphenicol via the combined reduction-oxidation process with Cu-Ni/graphene cathode[J]. Electrochimica Acta, 2020, 330: 135187. doi: 10.1016/j.electacta.2019.135187
[16] XU D D, SONG X Z, QI W Z, et al. Degradation mechanism, kinetics, and toxicity investigation of 4-bromophenol by electrochemical reduction and oxidation with Pd–Fe/graphene catalytic cathodes[J]. Chemical Engineering Journal, 2018, 333: 477-485. doi: 10.1016/j.cej.2017.09.173
[17] MA X J, LI M, LIU X, et al. A graphene oxide nanosheet-modified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction[J]. Chemical Engineering Journal, 2018, 348: 171-179. doi: 10.1016/j.cej.2018.04.168
[18] YE W J, ZHANG W W, HU X X, et al. Efficient electrochemical-catalytic reduction of nitrate using Co/AC0.9-AB0.1 particle electrode[J]. Science of the Total Environment, 2020, 732: 139245. doi: 10.1016/j.scitotenv.2020.139245
[19] WANG P, ZHANG X, WEI Y, et al. Ni/NiO nanoparticles embedded inporous graphite nanofibers towards enhanced electrocatalytic performance[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19792-19804. doi: 10.1016/j.ijhydene.2019.05.121
[20] JIA Y, ZHANG L Z, GAO G P, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting[J]. Advanced Materials, 2017, 29(17): 1700017. doi: 10.1002/adma.201700017
[21] ZHANG B G, HOU Y P, YU Z B, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes: Electrodes optimization, kinetics, influencing factors and mechanism[J]. Separation and Purification Technology, 2019, 210: 60-68. doi: 10.1016/j.seppur.2018.07.084
[22] SUN W Q, SUN Y J, SHAN K J, et al. Electrochemical degradation of oxytetracycline by Ti-Sn-Sb/gamma-Al2O3 three-dimensional electrodes[J]. Journal of Environmental Management, 2019, 241: 22-31.
[23] LIU W, AI Z H, ZHANG L Z. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment[J]. Journal of Hazardous Materials, 2012, 243: 257-264. doi: 10.1016/j.jhazmat.2012.10.024
[24] ANDRES GARCIA E, AGULLO BARCELO M, BOND P, et al. Hybrid electrochemical-granular activated carbon system for the treatment of greywater[J]. Chemical Engineering Journal, 2018, 352: 405-411. doi: 10.1016/j.cej.2018.07.042
[25] LI X, ZHANG W W, XIE D, et al. Electrochemical treatment of humic acid using particle electrodes ensembled by ordered mesoporous carbon[J]. Environmental Science and Pollution Research, 2018, 25(20): 20071-20083. doi: 10.1007/s11356-018-2193-x
[26] MAO R, ZHAO X, LAN H C, et al. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor[J]. Water Research, 2015, 77: 1-12. doi: 10.1016/j.watres.2015.03.002
[27] LI Y M, TANG L H, LI J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochemistry Communications, 2009, 11(4): 846-849. doi: 10.1016/j.elecom.2009.02.009
[28] FAN X B, ZHANG G L, ZHANG F B. Multiple roles of graphene in heterogeneous catalysis[J]. Chemical Society Reviews, 2015, 44(10): 3023-3035. doi: 10.1039/C5CS00094G
[29] ZHANG W W, HE Y C, LI C, et al. Persulfate activation using Co/AC particle electrodes and synergistic effects on humic acid degradation[J]. Applied Catalysis B: Environmental, 2021, 285: 119848. doi: 10.1016/j.apcatb.2020.119848
[30] CHEN M, WANG C, WANG Y C, et al. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode[J]. Electrochimica Acta, 2019, 323: 134779. doi: 10.1016/j.electacta.2019.134779
[31] 胡俊生, 苏博, 吴帅, 等. 活性炭粒子电极改性及其电催化性能[J]. 环境工程, 2020, 38(8): 136-141.
[32] 何万萍, 孟勇. 陶瓷-碳复合粒子电极的制备条件对三维电催化处理有机废水的影响[J]. 精细化工中间体, 2017, 47(3): 39-42.
[33] 周玉莲, 于永波, 黄湾, 等. 氧化石墨烯电催化高效降解有机染料RBk5[J]. 中国环境科学, 2019, 39(11): 4653-4659. doi: 10.3969/j.issn.1000-6923.2019.11.021
[34] 袁小亚. 石墨烯的制备研究进展[J]. 无机材料学报, 2011, 26(6): 561-570.
[35] ZHAO X, GUO L B, ZHANG B F, et al. Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition[J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
[36] ZHAO X, GUO L B, QU J H. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor[J]. Chemical Engineering Journal, 2014, 239: 53-59. doi: 10.1016/j.cej.2013.10.088
[37] ZHAO X, GUO L B, ZHANG B F, et al. Photoelectrocatalytic oxidation of metal-EDTA and recovery of metals by electrodeposition with a rotating cathode[J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
[38] CAO Y, QIAN X C, ZHANG Y X, et al. Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation[J]. Chemical Engineering Journal, 2019, 362: 487-496. doi: 10.1016/j.cej.2019.01.061