[1] 骆芳萍. 基于金属钼离子选择电极的磷酸根检测方法的研究[D]. 无锡: 江南大学, 2019. LUO F P. Study on phosphate detection method based onmetal molybdenum ion selective electrode[D]. Wuxi: Jiangnan University, 2019(in Chinese).
[2] 崔丽娜. 水质磷酸盐检测技术研究[D]. 上海: 上海海洋大学, 2018. CUI L N. Study on the determination technology of phosphate in water[D]. Shanghai: Shanghai Ocean University, 2018(in Chinese).
[3] KATAYEV E, USTYNYUK Y A, SESSLER J L. Receptors for tetrahedral oxyanions [J]. Coordination Chemistry Reviews, 2006, 250(23): 3004-3037.
[4] WARWICK C, GUERREIRO A, SOARES A. Sensing and analysis of soluble phosphates in environmental samples: A review [J]. Biosensors and Bioelectronics, 2012, 41(1): 1-11.
[5] 喻航. 水体富营养化的危害及防治对策 [J]. 智能城市, 2019, 5(17): 147-148. YU H. Harm of water eutrophication and prevention measures [J]. Intelligent City, 2019, 5(17): 147-148(in Chinese).
[6] TIESSEN H. Phosphorus in the Global Environment[M]. Berlin: Springer Netherlands, 2008: 631-632.
[7] KAWASAKI H, SATO K, OGAWA J, et al. Determination of inorganic phosphate by flow injection method with immobilized enzymes and chemiluminescence detection [J]. Analytical Biochemistry, 1989, 182(2): 366-370. doi: 10.1016/0003-2697(89)90609-X
[8] 韦珍妮. 浅谈高磷血症致慢性肾脏病血管钙化的研究及治疗进展 [J]. 临床检验杂志(电子版), 2020, 9(1): 241-242. WEI Z N. Discussing the research and treatment progress of vascular calcification of chronic kidney disease caused by hyperphosphatemia [J]. Clinical Laboratory Journal (Electronic Edition), 2020, 9(1): 241-242(in Chinese).
[9] VORUM H, DITZEL J. Disturbance of Inorganic Phosphate Metabolism in Diabetes Mellitus: Its Relevance to the Pathogenesis of Diabetic Retinopathy [J]. Journal of Ophthalmology, 2014, 2014(8): 1-8.
[10] HANRAHAN G, GLEDHILL M, FLETCHER P J, et al. High temporal resolution field monitoring of phosphate in the river frome using flow injection with diode array detection [J]. Analytica Chimica Acta, 2001, 440(1): 55-62. doi: 10.1016/S0003-2670(00)01395-7
[11] BERCHMANS S, ISSA T B, SINGH P. Determination of inorganic phosphate by electroanalytical methods: A review [J]. Analytica Chimica Acta, 2012, 729(11): 7-20.
[12] CAREY C M, VOGEL G L. Measurement of calcium activity in oral fluids by ion selective electrode: Method evaluation and simplified calculation of ion activity products [J]. Journal of Research of the National Institute of Standards & Technology, 2000, 105(2): 267.
[13] TOBEY S L, ANSLYN E V. Determination of inorganic phosphate in serum and saliva using a synthetic receptor [J]. Organic Letters, 2003, 5(12): 2029-2031. doi: 10.1021/ol034427x
[14] LIU W Q, DU Z F, QIAN Y, et al. A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles [J]. Sensors & Actuators B Chemical, 2013, 176(1): 927-931.
[15] WU H F, TONG C L. A specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant [J]. Acs Sensors, 2018, 3(8): 1539-1545. doi: 10.1021/acssensors.8b00343
[16] CHEN C, ZHAO J H, LU Y Z, et al. A fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase [J]. Analytical Chemistry, 2018, 90(5): 3505-3511. doi: 10.1021/acs.analchem.7b05325
[17] OGATA F, DAISUKE I, MEGUMU T. Adsorption of phosphate ion in aqueous solutions by calcined cobalt hydroxide at different temperatures [J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1570-1577. doi: 10.1016/j.jece.2015.05.028
[18] MURPHY J, RILEY J P. Modified single solution method for the determination of phosphate in natural water [J]. Analytica Chimica Acta, 1962, 27(1): 31-36.
[19] UDNAN Y, MCKELVIE I D, GRACE M R, et al. Evaluation of on-line preconcentration and flow-injection amperometry for phosphate determination in fresh and marine waters [J]. Talanta, 2005, 66(2): 461-466. doi: 10.1016/j.talanta.2004.12.064
[20] 丁家旺, 秦伟. 电化学传感技术在海洋环境监测中的应用 [J]. 环境化学, 2013, 33(1): 53-61. DING J W, QING W. Applications of electrochemical sensing technologies in marine environmental monitoring [J]. Environmental Chemistry, 2013, 33(1): 53-61(in Chinese).
[21] MILLS G, FONES G. A review ofin situmethods and sensors for monitoring the marine environment [J]. Sensor Review, 2012, 32(1): 17-28. doi: 10.1108/02602281211197116
[22] 王维虎. 基于物联网的湖泊水域岸线及水质监控技术的研究[D]. 武汉: 华中师范大学, 2015. WANG W H. The research of monitoring technology shoreline and water quality of lake bassed on IOT[D]. Wuhan: Central China Normal University, 2015(in Chinese).
[23] 吴玲. 一种高灵敏检测尿酸的聚阳离子纳米复合膜电化学传感器//[C]. 北京: 中国化学会第29届学术年会2014: 300. WU L. A highly sensitive polycation nanocomposite membrane electrochemical sensor for detecting uric acid[C]. Beijing: the 29 th Academic Annual Conference of Chinese Chemical Society 2014: 300(in Chinese).
[24] 付海曦, 刘威, 张春辉, 等. 水体中重金属离子的检测方法研究进展 [J]. 理化检验(化学分册), 2012, 48(4): 496-503. FU H XI, LIU W, ZHANG C H, et al. Recent advance of detection method of heavy metal ions in water [J]. Physical and Chemical Inspection (Chemical Volume), 2012, 48(4): 496-503(in Chinese).
[25] HUSSAIN R, KHAN M Q, KHAN A A. Electrochemical sensing of Pb2+ ion in water by ion selective membrane electrode based on Polypyrrole titanium(IV)sulphosalicylo phosphate cation exchange nanocomposite [J]. Groundwater for Sustainable Development, 2019, 8(1): 216-225.
[26] BAIG U, KHAN A A. Polyurethane-based cation exchange composite membranes: Preparation, characterization and its application in development of ion-selective electrode for detection of copper(II) [J]. Journal of Industrial and Engineering Chemistry, 2015, 29(1): 392-399.
[27] PAL S, GHOSH T K, GHOSH R, et al. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards [J]. Coordination Chemistry Reviews, 2020: 405.
[28] EVGENY A K, YURI A U, JONATHAN L S. Receptors for tetrahedral oxyanions [J]. Coordination Chemistry Reviews, 2006, 250(23-24): 3004-3037. doi: 10.1016/j.ccr.2006.04.013
[29] HYDE A M, ZULTANSKI S L, WALDMAN J H, et al. General principles and strategies for salting-out informed by the Hofmeister series [J]. Organic Process Research & Development, 2017, 21(9): 1355-1370.
[30] SATOH H, MIYAZAKI Y, TANIUCHI S, et al. Improvement of a phosphate ion-selective microsensor using bis(dibromophenylstannyl)methane as a carrier. [J]. Analytical Chemistry, 2017, 33(1): 825-830.
[31] TOPCU C, CAGLAR B, ONDER A, et al. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor [J]. Materials Research Bulletin, 2018, 98(1): 288-299.
[32] LIU D, CHEN W C, YANG R H, et al. Polymeric membrane phosphate sensitive electrode based on binuclear organotin compound [J]. Analytica Chimica Acta, 1997, 338(3): 209-214. doi: 10.1016/S0003-2670(96)00382-0
[33] 李龙. 基于新型分子识别机制的电位型传感器技术研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2016. LI L. Studies on Potentiometric Sensing Platforms Based on Novel Molecular Recognition Mechanisms[D] Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2016(in Chinese).
[34] EJHIEH A N, MASOUDIPOUR N. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE) [J]. Analytica Chimica Acta, 2010, 658(1): 68-74. doi: 10.1016/j.aca.2009.10.064
[35] TAFESSE F, ENEMCHUKWU M. Fabrication of new solid state phosphate selective electrodes for environmental monitoring [J]. Talanta, 2011, 83(5): 1495.
[36] 姜涛钦, 杨慧中. 一种固态磷酸根离子选择电极 [J]. 环境工程学报, 2016, 10(10): 5631-5636. doi: 10.12030/j.cjee.201504250 JIANG T X, YANG H Z. A solid-state phosphate ion-selective electrode [J]. Journal of Environmental Engineering, 2016, 10(10): 5631-5636(in Chinese). doi: 10.12030/j.cjee.201504250
[37] 李琳娜. 基于离子选择电极的磷酸根检测的研究[D]. 无锡: 江南大学, 2015. LI L N. Study on phosphate detection based on ion selective electrode[D]. Wuxi: Jiangnan University, 2015(in Chinese).
[38] YANG H Z, JIANG T Q, YU X D, et al. Phosphate sensor using molybdenum [J]. Journal of the Electrochemical Society, 2016, 163(9): 479-484. doi: 10.1149/2.0161609jes
[39] KABIR M F, RAHMAN M T, GURUNG A, et al. Electrochemical phosphate sensors using silver nanowires treated screen printed electrodes [J]. IEEE Sensors Journal, 2018, 18(9): 3480-3485. doi: 10.1109/JSEN.2018.2808163
[40] 宋彩侨. 固态离子选择性电极检测血清钾离子[D]. 大连: 大连理工大学, 2019. SONG C Q. Determination of serum potassium ion by solid-state ion-selective electrodes[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
[41] 秦溧. 基于二维MOF材料的纳米酶传感器阵列对磷酸盐的检测及其水解过程的监控[D]. 南京: 南京大学, 2019. QIN S. 2D-MOF nanozyme sensor arrays for probing phosphates and enzymatic hydrolysis[D]. Nanjing: Nanjing University, 2019(in Chinese).
[42] 卢圆圆. 化学修饰电极对土壤重金属和磷酸盐离子的灵敏检测[D]. 杭州: 浙江大学, 2019. LU Y Y. The sensitive detection of heavy mental ions and phosphate anions in soil by chemically modified electrodes[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
[43] XIAO D, YUAN H Y, LI J, et al. Surface modified cobalt-based sensor as a phosphate-sensitive electrode [J]. Analytical Chemistry, 1995, 67(2): 288-291. doi: 10.1021/ac00098a009
[44] 吴星. 改性UiO-66和氢氧化锆对磷酸根去除性能研究[D]. 南昌: 南昌航空大学, 2018. WU X. Study on the removal performance of phosphate by modified UiO-66 and zirconium hydroxide[D]. Nangchang: Engineering Nanchang Hangkong University, 2018(in Chinese).
[45] KHALED E, HASSAN H. N. A, GIRGIS A, METELKA R. Construction of novel simple phosphate screen-printed and carbon paste ion-selective electrodes [J]. Talanta, 2008, 77(2): 737-743. doi: 10.1016/j.talanta.2008.07.018
[46] KUGIMIYA A, KOHARA K. Biomimetic sensor for cAMP using an ion-sensitive field-effect transistor [J]. Materials Science & Engineering C, 2009, 29(3): 959-962.
[47] CINTI S, TALARICO D, PALLESC G, et al. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate [J]. Analytica Chimica Acta, 2016, 919(1): 78-84.
[48] TALARICO D, CINTI S, ARDUINI F, et al. Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system [J]. Environmental Science & Technology, 2015, 49(13): 7934-7939.
[49] QUINTANA J C, IDRISSI L, PALLESCHI G, et al. Investigation of amperometric detection of phosphate: Application in seawater and cyanobacterial biofilm samples [J]. Talanta, 2004, 63(3): 574.
[50] HE B S, LIU H. Electrochemical biosensor based on pyruvate oxidase immobilized AuNRs@Cu2O-NDs as electroactive probes loaded poly (diallyldimethylammonium chloride) functionalized graphene for the detection of phosphate[J]. Sensors and Actuators B: Chemical, 2020, 304: 127-303.
[51] OGABIELA E, ADELOJU S B, CUI J W, et al. A novel ultrasensitive phosphate amperometric nanobiosensor based on the integration of pyruvate oxidase with highly ordered gold nanowires array [J]. Biosensors & Bioelectronics, 2015, 71(1): 278-285.
[52] LAWAL A, ADELOJU S B. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B [J]. Biosensors & Bioelectronics, 2013, 40(1): 377-384.
[53] ADELOJU S B, LAWAL A T. Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde [J]. Analytica Chimica Acta, 2011, 691(1-2): 89-94. doi: 10.1016/j.aca.2011.02.020
[54] CONRATH N, GRUNDING B, HUWEL S, et al. A novel enzyme sensor for the determination of inorganic phosphate [J]. Analytica Chimica Acta, 1995, 309(1-3): 47-52. doi: 10.1016/0003-2670(95)00065-8
[55] MOUSTY C, COSNIER S, SHAN D, et al. Trienzymatic biosensor for the determination of inorganic phosphate [J]. Analytica Chimica Acta, 2001, 443(1): 1-8. doi: 10.1016/S0003-2670(01)01188-6
[56] MARIAULLE P, SINAPI F, LAMBERTS L, et al. Application of electrodes modified with ion-exchange polymers for the amperometric detection of non-redox cations and anions in combination to ion chromatography [J]. Electrochimica Acta, 2001, 46(23): 3543-3553. doi: 10.1016/S0013-4686(01)00636-3
[57] TORRES F M, ESTELA J M. Sequential injection spectrophotometric determination of orthophosphate in beverages, wastewaters and urine samples by electrogeneration of molybdenum blue using tubular flow-through electrodes [J]. Analytica Chimica Acta, 2004, 510(1): 61-68. doi: 10.1016/j.aca.2003.12.051
[58] HE J, SUN H, DAI J, et al. In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection[J]. Journal of Hazardous Materials, 2020, 392: 122-313. https://doi.org/10.1016/j.jhazmat.2020.122313.
[59] UPADHYAY L S B, VERMA N. Recent advances in phosphate biosensors [J]. Biotechnology Letters, 2015, 37(7): 1335-1345. doi: 10.1007/s10529-015-1823-3
[60] COSNIER S, GONDRA C, WATELET J C, et al. A bienzyme electrode (alkaline phosphatase-polyphenol oxidase) for the amperometric determination of phosphate [J]. Analytical Chemistry, 1998, 70(18): 3952-3956. doi: 10.1021/ac980125a
[61] HOUSSEMEDDINE E, CLAUDE D. A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring [J]. Microchimica Acta, 2008, 163(3-4): 79-184.
[62] ZHANG Z Q, JAFFREZIC R N, BESSUEILLE F O, et al. Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films [J]. Analytica Chimica Acta, 2008, 615(1): 73-79. doi: 10.1016/j.aca.2008.03.044
[63] XUE Y, ZHENG X Y, LI G X. Determination of phosphate in water by means of a new electrochemiluminescence technique based on the combination of liquid–liquid extraction with benzene-modified carbon paste electrode [J]. Talanta, 2007, 72(2): 450-456. doi: 10.1016/j.talanta.2006.11.003
[64] XU J J, PENG Y, BAO N, et al. In-channel indirect amperometric detection of nonelectroactive anions for electrophoresis on a poly(dimethylsiloxane) microchip [J]. Electrophoresis, 2005, 26(19): 3615-3621. doi: 10.1002/elps.200410401