[1] YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment [J]. Science of The Total Environment, 2018, 642: 690-700. doi: 10.1016/j.scitotenv.2018.06.068
[2] 余嘉衍, 李冰玉, 周一敏, 等. 湖南省某矿遗址周围农业土壤重金属污染及风险评价 [J]. 环境化学, 2020, 39(4): 1024-1030. doi: 10.7524/j.issn.0254-6108.2019040201 YU J Y, LI B Y, ZHOU Y M, et al. Pollution and risk assessment of heavy metal in agricultural soil around an abandon mine site in Hunan Province [J]. Environmental Chemistry, 2020, 39(4): 1024-1030(in Chinese). doi: 10.7524/j.issn.0254-6108.2019040201
[3] 王玉军, 刘存, 周东美, 等. 客观地看待我国耕地土壤环境质量的现状———关于《全国土壤污染状况调查公报》中有关问题的讨论和建议 [J]. 农业环境科学学报, 2014, 33(8): 1465-1473. doi: 10.11654/jaes.2014.08.001 WANG Y J, LIU C, ZHOU D M, et al. Objectively viewing the status quo of soil environmental quality in China's cultivated land———Discussion and suggestions on relevant issues in the national soil pollution status survey bulletin [J]. Journal of Agro-Environment Science, 2014, 33(8): 1465-1473(in Chinese). doi: 10.11654/jaes.2014.08.001
[4] LI X Z, ZHAO Z Q, YUAN Y, et al. Heavy metal accumulation and its spatial distribution in agricultural soils: Evidence from Hunan Province, China [J]. Rsc Adv, 2018, 8(19): 10665-10672. doi: 10.1039/C7RA12435J
[5] XU D M, FU R B, LIU H Q, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review [J]. Journal of Cleaner Production, 2020: 124989.
[6] VAREDA J P, VALENTE A J M, DURãES L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review [J]. Journal of Environmental Management, 2019, 246: 101-118. doi: 10.1016/j.jenvman.2019.05.126
[7] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105 LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
[8] 王涛, 段积德, 王锦霞, 等. 生物炭对土壤重金属的修复效应研究进展 [J]. 湖南生态科学学报, 2020, 7(3): 55-65. doi: 10.3969/j.issn.2095-7300.2020.03.009 WANG T, DUAN J D, WANG J X, et al. Research progress on remediation effect of biochar on heavy metals in soil [J]. Hunan Journal of Ecological Science, 2020, 7(3): 55-65(in Chinese). doi: 10.3969/j.issn.2095-7300.2020.03.009
[9] ZHOU W Y, LIANG H T, LU Y Y, et al. Adsorption of gold from waste mobile phones by biochar and activated carbon in gold iodized solution [J]. Waste Management, 2021, 120: 530-537. doi: 10.1016/j.wasman.2020.10.017
[10] AHMED M B, JOHIR M A H, ZHOU J L, et al. Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption [J]. Journal of Cleaner Production, 2019, 225: 405-413. doi: 10.1016/j.jclepro.2019.03.342
[11] 刘高洁, 周丹丹, 李丽娜, 等. 柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响 [J]. 环境化学, 2020, 39(2): 343-351. doi: 10.7524/j.issn.0254-6108.2019021906 LIU G J, ZHOU D D, LI L N, et al. Effects of citric acid on the stability of immobilizaed heavy metals by biochar in contaminated soil [J]. Environmental Chemistry, 2020, 39(2): 343-351(in Chinese). doi: 10.7524/j.issn.0254-6108.2019021906
[12] LIU K, LI F B, CUI J H, et al. Simultaneous removal of Cd (Ⅱ) and As (Ⅲ) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms [J]. Journal of Hazardous Materials, 2020, 395: 122623. doi: 10.1016/j.jhazmat.2020.122623
[13] HAN L F, ZHANG E Y, YANG Y, et al. Highly efficient U (Ⅵ) removal by chemically modified hydrochar and pyrochar derived from animal manure [J]. Journal of Cleaner Production, 2020, 264: 121542. doi: 10.1016/j.jclepro.2020.121542
[14] INYANG M I, GAO B, YAO Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environmental Science & Technology, 2016, 46(4): 406-433.
[15] MEHMOOD M A, YE G B, LUO H B, et al. Pyrolysis and kinetic analyses of camel grass (Cymbopogon schoenanthus) for bioenergy [J]. Bioresource Technology, 2017, 228: 18-24. doi: 10.1016/j.biortech.2016.12.096
[16] KOŁODYŃSKA D, WNĘTRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal [J]. Chemical Engineering Journal, 2012, 197: 295-305. doi: 10.1016/j.cej.2012.05.025
[17] LEE X J, LEE L Y, GAN S, et al. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies [J]. Bioresource Technology, 2017, 236: 155-163. doi: 10.1016/j.biortech.2017.03.105
[18] QIU M Y, SUN K, JIN J, et al. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: The effect of feedstock, temperature, minerals, and properties [J]. Environmental Pollution, 2015, 206: 298-305. doi: 10.1016/j.envpol.2015.07.026
[19] INTANI K, LATIF S, KABIR A K M R, et al. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves [J]. Bioresource Technology, 2016, 218: 541-551. doi: 10.1016/j.biortech.2016.06.114
[20] KAUR R, GERA P, JHA M K, et al. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis [J]. Bioresource Technology, 2018, 250: 422-428. doi: 10.1016/j.biortech.2017.11.077
[21] KUMAR M, SHUKLA S K, UPADHYAY S N, et al. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models [J]. Bioresource Technology, 2020, 310: 123393. doi: 10.1016/j.biortech.2020.123393
[22] MANATURA K. Inert torrefaction of sugarcane bagasse to improve its fuel properties [J]. Case Studies in Thermal Engineering, 2020, 19: 100623. doi: 10.1016/j.csite.2020.100623
[23] CHEN M, LIU S J, YUAN X F, et al. Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar [J]. Renewable Energy, 2021, 163: 357-367. doi: 10.1016/j.renene.2020.09.006
[24] CONTRERAS M D M, ROMERO I, MOYA M, et al. Olive-derived biomass as a renewable source of value-added products [J]. Process Biochemistry, 2020, 97: 43-56. doi: 10.1016/j.procbio.2020.06.013
[25] ANUPAM K, SHARMA A K, LAL P S, et al. Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding [J]. Energy, 2016, 106: 743-756. doi: 10.1016/j.energy.2016.03.100
[26] JOUIAD M, AL-NOFELI N, KHALIFA N, et al. Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm [J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 183-190. doi: 10.1016/j.jaap.2014.10.024
[27] KWON G, BHATNAGAR A, WANG H L, et al. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar [J]. Journal of Hazardous Materials, 2020, 400: 123242. doi: 10.1016/j.jhazmat.2020.123242
[28] LI W Q, DANG Q, BROWN R C, et al. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy [J]. Bioresource Technology, 2017, 241: 959-968. doi: 10.1016/j.biortech.2017.06.049
[29] LEE Y W, PARK J J, RYU C K, et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 ℃ [J]. Bioresource Technology, 2013, 148: 196-201. doi: 10.1016/j.biortech.2013.08.135
[30] HUANG Y F, HUANG Y Y, CHIUEH P T, et al. Heterogeneous Fenton oxidation of trichloroethylene catalyzed by sewage sludge biochar: Experimental study and life cycle assessment [J]. Chemosphere, 2020, 249: 126139. doi: 10.1016/j.chemosphere.2020.126139
[31] XU J Q, YU J X, XU J L, et al. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis [J]. Science of The Total Environment, 2020, 742: 140235. doi: 10.1016/j.scitotenv.2020.140235
[32] GIWA A S, CHANG F M, YUAN J, et al. Evaluation of the potential beneficial pyrolyzed product yields from sewage sludge and bone waste disposal [J]. Environmental Technology & Innovation, 2020, 18: 100784.
[33] 史娜. 关于生物炭修复土壤重金属污染的研究进展 [J]. 农业技术与装备, 2020(7): 150. doi: 10.3969/j.issn.1673-887X.2020.07.070 SHI N. Research progress on remediation of soil heavy metal pollution by biochar [J]. Agricultural technology and equipment, 2020(7): 150(in Chinese). doi: 10.3969/j.issn.1673-887X.2020.07.070
[34] CHA J S, PARK S H, JUNG S C, et al. Production and utilization of biochar: A review [J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. doi: 10.1016/j.jiec.2016.06.002
[35] VITHANAGE M, HERATH I, JOSEPH S, et al. Interaction of arsenic with biochar in soil and water: A critical review [J]. Carbon, 2017, 113: 219-230. doi: 10.1016/j.carbon.2016.11.032
[36] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282
[37] QIAN K Z, KUMAR A, ZHANG H L, et al. Recent advances in utilization of biochar [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1055-1064. doi: 10.1016/j.rser.2014.10.074
[38] WANG L W, OK Y S, TSANG D C W, et al. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment [J]. Soil Use and Management, 2020, 36(3): 358-386. doi: 10.1111/sum.12592
[39] VENDRA S S, CHATURVEDI S, DHYANI V C, et al. Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite [J]. Bioresource Technology, 2020, 314: 123674. doi: 10.1016/j.biortech.2020.123674
[40] GÓMEZ N, ROSAS J G, CARA J, et al. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale [J]. Journal of Cleaner Production, 2016, 120: 181-190. doi: 10.1016/j.jclepro.2014.10.082
[41] JOSEPH S, PEACOCKE C, LEHMANN J, et al. Developing a biochar classification and test methods [J]. Biochar for Environmental Management: Science and Technology, 2009: 107-126.
[42] RAFIQ M K, BACHMANN R T, RAFIQ M T, et al. Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance [J]. Plos One, 2016, 11(6). doi: 10.1371/journal.pone.0156894
[43] LIAN F, XING B S. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
[44] ZENG K, MINH D P, GAUTHIER D, et al. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood [J]. Bioresource Technology, 2015, 182: 114-119. doi: 10.1016/j.biortech.2015.01.112
[45] ABOUIKAS A, HAMMANI H, ACHABY M E, et al. Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char [J]. Bioresource Technology, 2017, 243: 400-408. doi: 10.1016/j.biortech.2017.06.098
[46] HODGSON E, JAMES A L, RAVELLA S R, et al. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks [J]. Bioresource Technology, 2016, 214: 574-581. doi: 10.1016/j.biortech.2016.05.009
[47] MALIUTINA K, TAHMASEBI A, YU J L. Pressurized entrained-flow pyrolysis of microalgae: enhanced production of hydrogen and nitrogen-containing compounds [J]. Bioresource Technology, 2018, 256: 160-169. doi: 10.1016/j.biortech.2018.02.016
[48] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
[49] AHMAD M, LEE S S, DOU X M, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water [J]. Bioresource Technology, 2012, 118: 536-544. doi: 10.1016/j.biortech.2012.05.042
[50] CHEN Y Q, YANG H P, WANG X H, et al. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature [J]. Bioresource Technology, 2012, 107: 411-418. doi: 10.1016/j.biortech.2011.10.074
[51] AHMAD M, LEE S S, RAJAPAKSHA A U, et al. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures [J]. Bioresource Technology, 2013, 143: 615-622. doi: 10.1016/j.biortech.2013.06.033
[52] SCHREITER I J, SCHMIDT W, SCHüTH C. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments [J]. Chemosphere, 2018, 203: 34-43. doi: 10.1016/j.chemosphere.2018.03.173
[53] LIU Z Z, SINGER S, TONG Y R, et al. Characteristics and applications of biochars derived from wastewater solids [J]. Renewable and Sustainable Energy Reviews, 2018, 90: 650-664. doi: 10.1016/j.rser.2018.02.040
[54] LIAN F, HUANG F, CHEN W, et al. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems [J]. Environmental Pollution, 2011, 159(4): 850-857. doi: 10.1016/j.envpol.2011.01.002
[55] AMEN R, BASHIR H, BIBI I, et al. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions [J]. Chemical Engineering Journal, 2020, 396: 125195. doi: 10.1016/j.cej.2020.125195
[56] JIANG B N, LIN Y Q, MBOG J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics [J]. Bioresource Technology, 2018, 270: 603-611. doi: 10.1016/j.biortech.2018.08.022
[57] RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification [J]. Chemosphere, 2016, 148: 276-291. doi: 10.1016/j.chemosphere.2016.01.043
[58] YI Y, WANG X Y, MA J, et al. An efficient Egeria najas-derived biochar supported nZVI composite for Cr (Ⅵ) removal: Characterization and mechanism investigation based on visual MINTEQ model [J]. Environmental Research, 2020, 189: 109912. doi: 10.1016/j.envres.2020.109912
[59] PREMARATHNA K S D, RAJAPAKSHA A U, ADASSORIYA N, et al. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media [J]. Journal of Environmental Management, 2019, 238: 315-322.
[60] WANG S S, GAO B, ZIMMERMAN A R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite [J]. Bioresource Technology, 2015, 175: 391-395. doi: 10.1016/j.biortech.2014.10.104
[61] PALLARéS J, GONZáLEZ-CENCERRADO A, ARAUZO I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam [J]. Biomass and Bioenergy, 2018, 115: 64-73. doi: 10.1016/j.biombioe.2018.04.015
[62] KUMAR M, XIONG X N, WAN Z H, et al. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials [J]. Bioresource Technology, 2020, 312: 123613. doi: 10.1016/j.biortech.2020.123613
[63] INYANG M, GAO B, YAO Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass [J]. Bioresource Technology, 2012, 110: 50-56. doi: 10.1016/j.biortech.2012.01.072
[64] YAASHIKAA P R, SENTHIL K P, VARJANI S J, et al. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants [J]. Bioresource Technology, 2019, 292: 122030. doi: 10.1016/j.biortech.2019.122030
[65] 叶益辰, 孙雨晴, 萨仁格日乐, 等. 磷酸改性生物炭-LDHs (Mg-Al-NO3) 复合材料对双酚A的吸附 [J]. 环境化学, 2020, 38(1): 61-70. doi: 10.7524/j.issn.0254-6108.2019020206 YE Y C, SUN Y Q, SAREN G, et al. Adsorption of bisphenol A by phosphoric acid modified biochar-LDHs (Mg-Al-NO3) composites [J]. Environmental Chemisty, 2020, 38(1): 61-70(in Chinese). doi: 10.7524/j.issn.0254-6108.2019020206
[66] YANG F, ZHANG S S, SUN Y Q, et al. A novel electrochemical modification combined with one- step pyrolysis for preparation of sustainable thorn- like iron- based biochar composites [J]. Bioresource Technology, 2019, 274: 379-385. doi: 10.1016/j.biortech.2018.10.042
[67] JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol- modified biochar [J]. Chemical Engineering Journal, 2014, 248: 168-174. doi: 10.1016/j.cej.2014.03.006
[68] HADJITTOFI L, PRODROMOU M, PASHALIDIS I. Activated biochar derived from cactus fibres–preparation, characterization and application on Cu(II) removal from aqueous solutions [J]. Bioresource Technology, 2014, 159: 460-464. doi: 10.1016/j.biortech.2014.03.073
[69] WANG M C, SHENG G D, QIU Y P. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead [J]. Bioresour Technol, 2015, 181: 13-17. doi: 10.1016/j.biortech.2015.01.044
[70] WANG L, WANG Y J, MA F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review [J]. Science of The Total Environment, 2019, 668: 1298-1309. doi: 10.1016/j.scitotenv.2019.03.011
[71] FANG Z Q, QIU X Q, HUANG R X, et al. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization [J]. Desalination, 2011, 280(1): 224-231.
[72] JIANG X, RUI H, CHEN G C, et al. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism [J]. Journal of Hazardous Materials, 2020, 399: 123067. doi: 10.1016/j.jhazmat.2020.123067
[73] YU Z H, QIU W W, WANG F, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar [J]. Chemosphere, 2017, 168: 341-349. doi: 10.1016/j.chemosphere.2016.10.069
[74] 冯彦房, 薛利红, 杨梖, 等. 载镧生物质炭吸附水体中As(Ⅴ) 的过程与机制 [J]. 农业环境科学学报, 2015, 34(11): 2190-2197. doi: 10.11654/jaes.2015.11.022 FENG Y F, XUE L H, YANG B, et al. Adsorption process and mechanism of As (Ⅴ) in water by lanthanum loaded biochar [J]. Journal of Agro-Environment Science, 2015, 34(11): 2190-2197(in Chinese). doi: 10.11654/jaes.2015.11.022
[75] YANG F, ZHANG S S, SUN Y Q, et al. Fabrication and characterization of hydrophilic corn stalk biochar- supported nanoscale zero- valent iron composites for efficient metal removal [J]. Bioresource Technology, 2018, 265: 490-497. doi: 10.1016/j.biortech.2018.06.029
[76] TRAKAL L, VESELSKá V, ŠAFAŘíK I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars [J]. Bioresource Technology, 2016, 203: 318-324. doi: 10.1016/j.biortech.2015.12.056
[77] HAN Y T, CAO X, OUYANG X, et al. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (Ⅵ) from aqueous solution: Effects of production conditions and particle size [J]. Chemosphere, 2016, 145: 336-341. doi: 10.1016/j.chemosphere.2015.11.050
[78] MA Y, LIU W J, ZHANG N, et al. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution [J]. Bioresource Technology, 2014, 169: 403-408. doi: 10.1016/j.biortech.2014.07.014
[79] XUE Y W, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests [J]. Chemical Engineering Journal, 2015, 200-202(15): 673-678.
[80] FANG J, GAO B, ZIMMERMAN A R, et al. Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium [J]. RSC Advances, 2016, 6(30): 24906-24911. doi: 10.1039/C6RA01644H
[81] YANG G X, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater [J]. Water Research, 2014, 48: 396-405. doi: 10.1016/j.watres.2013.09.050
[82] CHEN D, LIU X Y, BIAN R J, et al. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis [J]. Journal of Environmental Management, 2018, 222(15): 76-85.
[83] 黄敏, 刘茜, 朱楚怡, 等. 施用生物质炭对土壤Cd、Pb有效性影响的整合分析 [J]. 环境科学学报, 2018, 222(15): 76-85. HUANG M, LIU Q, ZHU C Y, et al. Integrated analysis of the effects of biochar application on Soil Cd and Pb availability [J]. Journal of Environmental Science, 2018, 222(15): 76-85(in Chinese).
[84] REES F, GERMAIN C, STERCKEMAN T, et al. Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar [J]. Plant and Soil, 2015, 395(1): 57-73.
[85] XU P, SUN C X, YE X Z, et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil [J]. Ecotoxicology and Environmental Safety, 2016, 132: 94-100. doi: 10.1016/j.ecoenv.2016.05.031
[86] LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil [J]. Science of the Total Environment, 2018, 645: 702-709. doi: 10.1016/j.scitotenv.2018.07.115
[87] MOHAMED B A, ELLIS N, KIM C S, et al. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil [J]. Environmental Pollution, 2017, 230: 329-338. doi: 10.1016/j.envpol.2017.06.075
[88] WANG Y Y, ZHENG K X, ZHAN W H, et al. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111294. doi: 10.1016/j.ecoenv.2020.111294
[89] QAYYUM M F, HAIDER G, IQBAL M, et al. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize [J]. Chemosphere, 2020: 128980.
[90] MENZIES N W, DONN M J, KOPITTKE P M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils [J]. Environmental Pollution, 2007, 145(1): 121-130. doi: 10.1016/j.envpol.2006.03.021
[91] GAO L, GAO B, XU D Y, et al. DGT: A promising technology for in-situ measurement of metal speciation in the environment [J]. Science of the Total Environment, 2020, 715: 136810. doi: 10.1016/j.scitotenv.2020.136810
[92] HAN L F, ZHAO X J, JIN J, et al. Using sequential extraction and DGT techniques to assess the efficacy of plant- and manure-derived hydrochar and pyrochar for alleviating the bioavailability of Cd in soils [J]. Science of the Total Environment, 2019, 678: 543-550. doi: 10.1016/j.scitotenv.2019.05.039