[1] 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略 [J]. 中国科学院院刊, 2014, 29(3): 315-320, 350, 272. ZHOU J J, ZHOU J, FENG R G. Status of China's heavy metal contamination in soil and its remediation strategy [J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 315-320, 350, 272(in Chinese).
[2] 梁烜赫, 曹铁华, 张磊, 等. 吉林省农田重金属含量及其在作物中的累积 [J]. 吉林农业科学, 2011, 36(6): 59-62. doi: 10.3969/j.issn.1003-8701.2011.06.018 LIANG X H, CAO T H, ZHANG L, et al. Content of heavy metals in farmland soil and accumulation in crops in Jilin province [J]. Journal of Northeast Agricultural Sciences, 2011, 36(6): 59-62(in Chinese). doi: 10.3969/j.issn.1003-8701.2011.06.018
[3] 陈亚华, 黄少华, 刘胜环, 等. 南京地区农田土壤和蔬菜重金属污染状况研究 [J]. 长江流域资源与环境, 2006, 15(3): 356-360. doi: 10.3969/j.issn.1004-8227.2006.03.017 CHEN Y H, HUANG S H, LIU S H, et al. Study of the heavy metal contamination in soils and vegetables in Nanjing area [J]. Resources and Environment in the Yangtze Basin, 2006, 15(3): 356-360(in Chinese). doi: 10.3969/j.issn.1004-8227.2006.03.017
[4] 杨丽, 毛祖莉. 衡阳市绿地Cu、Zn、Cd、Pb形态分布及健康风险评价 [J]. 环境科学与技术, 2019, 42(S1): 227-231. YANG L, MAO Z L. Study on the Speciation of Cu and Zn and Risk Assessment in Urban Green Space in Hengyang City [J]. Environmental Science & Technology, 2019, 42(S1): 227-231(in Chinese).
[5] 宋志政, 周润声. 我国重金属污染土壤的治理与修复研究进展 [J]. 化工设计通讯, 2020, 46(2): 216-217. doi: 10.3969/j.issn.1003-6490.2020.02.144 SONG Z Z, ZHOU R S. Research progress in remediation and remediation of heavy metal contaminated soil in China [J]. Chemical Engineering Design Communications, 2020, 46(2): 216-217(in Chinese). doi: 10.3969/j.issn.1003-6490.2020.02.144
[6] 王丽娟. 土壤重金属污染的危害及修复 [J]. 现代农业, 2017(1): 73-75. doi: 10.3969/j.issn.1008-0708.2017.01.061 WANG L J. Harm and remediation of heavy metal pollution in soil [J]. Modern Agriculture, 2017(1): 73-75(in Chinese). doi: 10.3969/j.issn.1008-0708.2017.01.061
[7] 吕宏虹, 宫艳艳, 唐景春, 等. 生物炭及其复合材料的制备与应用研究进展 [J]. 农业环境科学学报, 2015, 34(8): 1429-1440. doi: 10.11654/jaes.2015.08.001 LV H H, GONG Y Y, TANG J C, et al. Advances in preparation and applications of biochar and its composites [J]. Journal of Agro-Environment Science, 2015, 34(8): 1429-1440(in Chinese). doi: 10.11654/jaes.2015.08.001
[8] 朱灵峰, 何怡雪, 张昊, 等. 锰改性玉米秸秆生物炭吸附去除1, 4-苯醌 [J]. 江苏农业学报, 2016, 32(3): 570-574. doi: 10.3969/j.issn.1000-4440.2016.03.013 ZHU L F, HE Y X, ZHANG H, et al. Adsorptive removal of 1, 4-benzoquinone by Mn-modified cornstalk biochar [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 570-574(in Chinese). doi: 10.3969/j.issn.1000-4440.2016.03.013
[9] 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究 [J]. 中国工程科学, 2011, 13(2): 83-89. doi: 10.3969/j.issn.1009-1742.2011.02.015 CHEN W F, ZHANG W M, MENG J, et al. Researches on biochar application technology [J]. Strategic Study of CAE, 2011, 13(2): 83-89(in Chinese). doi: 10.3969/j.issn.1009-1742.2011.02.015
[10] 何振嘉. 生物炭对土壤重金属污染修复研究 [J]. 安徽农业科学, 2019, 47(21): 12-13. doi: 10.3969/j.issn.0517-6611.2019.21.004 HE Z J. Study on biochar’s remediation of heavy metal pollution in soil [J]. Journal of Anhui Agricultural Sciences, 2019, 47(21): 12-13(in Chinese). doi: 10.3969/j.issn.0517-6611.2019.21.004
[11] LV H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite [J]. Chemosphere, 2018, 194: 360-369. doi: 10.1016/j.chemosphere.2017.11.182
[12] 吴诗雪, 王欣, 陈灿, 等. 凤眼莲、稻草和污泥制备生物炭的特性表征与环境影响解析 [J]. 环境科学学报, 2015, 35(12): 4021-4032. WU S X, WANG X, CHEN C, et al. Characterization of biochar derived from water hyacinth, rice straw and sewage sludge and their environmental implications [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4021-4032(in Chinese).
[13] 孟梅, 华玉妹, 朱端卫, 等. 生物炭对重金属污染沉积物的修复效果 [J]. 环境化学, 2015, 35(12): 4021-4032. MENG M, HUA Y M, ZHU D W, et al. Remediation effect of biochar on sediment contaminated by heavy metals [J]. Environmental Chemistry, 2015, 35(12): 4021-4032(in Chinese).
[14] 尹光彩, 陶琳, 宋小旺, 等. 不同原料生物炭的改性及其吸附/钝化Cd(Ⅱ)效果 [J]. 土壤通报, 2020, 51(3): 748-756. YIN G C, TAO L, SONG X W, et al. A review on the modification, Cd(Ⅱ) adsorption/passivation of biochars prepared by different raw materials [J]. Chinese Journal of Soil Science, 2020, 51(3): 748-756(in Chinese).
[15] 吴蔚君, 徐云连, 邢素林, 等. 生物炭对土壤氮磷转化和流失的影响 [J]. 农学学报, 2018, 8(9): 20-26. doi: 10.11923/j.issn.2095-4050.cjas17050013 WU W J, XU Y L, XING X L, et al. Effect of Biochar on soil nitrogen and phosphorus transformation and loss [J]. Journal of Agriculture, 2018, 8(9): 20-26(in Chinese). doi: 10.11923/j.issn.2095-4050.cjas17050013
[16] ZHENG H, WANG Z, DENG X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil [J]. Geoderma, 2013, 206: 32-39. doi: 10.1016/j.geoderma.2013.04.018
[17] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展 [J]. 地球科学进展, 2014, 29(1): 68-79. doi: 10.11867/j.issn.1001-8166.2014.01-0068 WU Y, XU G, LV Y C, ey al. Effects of biochar amendment on soil physical and chemical properties: current status and knowledge gaps [J]. Advances in Earth Science, 2014, 29(1): 68-79(in Chinese). doi: 10.11867/j.issn.1001-8166.2014.01-0068
[18] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al. A review of biochars'potential role in the remediati on, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269-3282. doi: 10.1016/j.envpol.2011.07.023
[19] 陈再明, 方远, 徐义亮, 等. 水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素 [J]. 环境科学学报, 2012, 32(4): 769-776. CHEN Z M, FANG Y, XU Y L, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors [J]. Acta Scientiae Circumstantiae, 2012, 32(4): 769-776(in Chinese).
[20] 许超, 林晓滨, 吴启堂, 等. 淹水条件下生物炭对污染土壤重金属有效性及养分含量的影响 [J]. 水土保持学报, 2012, 26(6): 194-198. XU C, LIN X B, WU Q T, et al. Impacts of biochar on availability of heavy metals and nutrient content of contaminated soil under waterlogged conditions [J]. Journal of Soil and Water Conservation, 2012, 26(6): 194-198(in Chinese).
[21] 于志红, 谢丽坤, 刘爽, 等. 生物炭-锰氧化物复合材料对红壤吸附铜特性的影响 [J]. 生态环境学报, 2014, 23(5): 897-903. doi: 10.3969/j.issn.1674-5906.2014.05.026 YU Z H, XIE L K, LIU S, et al. Effects of biochar-manganese oxides composite on adsorption characteristics of Cu in red soil [J]. Ecology and Environmental Sciences, 2014, 23(5): 897-903(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.05.026
[22] 杨永军. 生物炭负载铁锰氧化物对铅、铜污染土壤的稳定化研究[D]. 咸阳: 西北农林科技大学, 2018. YANG Y J. Study of modified biochar on the stabilization of heavy metals lead and copper contaminated soil[D]. Xianyang: Northwest A&F University, 2018 (in Chinese).
[23] O′REILLY S E, HOCHELLA JR M F. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides [J]. Geochim Cosmochim Ac, 2003, 67(23): 4471-4487. doi: 10.1016/S0016-7037(03)00413-7
[24] 于志红, 黄一帆, 廉菲, 等. 生物炭-锰氧化物复合材料吸附砷(Ⅲ)的性能研究 [J]. 农业环境科学学报, 2015, 34(1): 155-161. doi: 10.11654/jaes.2015.01.022 YU Z H, HUANG Y F, LIAN F, et al. Adsorption of arsenic(Ⅲ) on biochar-manganese oxide composites [J]. Journal of Agro-Environment Science, 2015, 34(1): 155-161(in Chinese). doi: 10.11654/jaes.2015.01.022
[25] 樊伟, 卞战强, 田向红, 等. 固载化纳米MnO2对砷的吸附性能研究 [J]. 水处理技术, 2013, 39(1): 60-64. doi: 10.3969/j.issn.1000-3770.2013.01.013 FAN W, BIAN Z Q, TIAN X H, et al. Study on absorption of arsenic by immobilized nano-manganese oxide [J]. Technology of Water Treatment, 2013, 39(1): 60-64(in Chinese). doi: 10.3969/j.issn.1000-3770.2013.01.013
[26] 董爱琴, 谢杰, 刘佳, 等. 土壤重金属钝化材料生物炭的研究进展 [J]. 环境污染与防治, 2017, 39(3): 319-325. DONG A Q, XIE J, LIU J, et al. Advances on heavy metal passivation material of biochar in soils [J]. Environmental Pollution & Control, 2017, 39(3): 319-325(in Chinese).
[27] SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution [J]. Chemical Engineering Journal, 2014, 242: 36-42. doi: 10.1016/j.cej.2013.12.061
[28] LI B, YANG L, WANG C Q, et al. Adsorption of Cd(Ⅱ) from aqueous solutions by rape straw biochar derive d from different modification processes [J]. Chemosphere, 2017, 175: 332-340. doi: 10.1016/j.chemosphere.2017.02.061
[29] 杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应 [J]. 环境科学, 2016, 37(9): 3562-3574. YANG L, LI B, WANG C Q, et al. Effect of modified biochars on soil cadmium stabilization in paddy suffered from original or exogenous contamination [J]. Environmental Science, 2016, 37(9): 3562-3574(in Chinese).
[30] 孙彤, 付宇童, 李可, 等. 锰基改性生物炭对弱碱性Cd污染土壤团聚体结构以及Cd含量特征的影响 [J]. 环境科学, 2020, 41(7): 3426-3433. SUN T, FU Y T, LI K, et al. Effect of Mn-modified biochar on the characteristics of aggregate structure and the content of Cd in weakly alkaline Cd-contaminated soil [J]. Environmental Science, 2020, 41(7): 3426-3433(in Chinese).
[31] 蒲生彦, 上官李想, 刘世宾, 等. 生物炭及其复合材料在土壤污染修复中的应用研究进展 [J]. 生态环境学报, 2019, 28(3): 629-635. PU S Y, SHANGGUANG L X, LIU S B, et al. A review of the application of biochar and its composites in soil remediation [J]. Ecology and Environmental Sciences, 2019, 28(3): 629-635(in Chinese).
[32] 于志红. 锰氧化物—生物炭复合材料对砷的生物有效性的影响[D]. 北京: 中国农业科学院, 2015. YU Z H. A Effects of biochar-manganese oxide composites on bio-availability of arsenic[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015 (in Chinese).
[33] TESSIER A, CAMPBELL P G, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51: 844-851. doi: 10.1021/ac50043a017
[34] HE R Z, PENG Z Y, LYU H H, et al. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal [J]. Science of the Total Environment, 2018, 612: 1177-1186. doi: 10.1016/j.scitotenv.2017.09.016
[35] FU H, MA S, ZHAO P, et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism [J]. Chemical Engineering Journal, 2019, 360: 157-170. doi: 10.1016/j.cej.2018.11.207
[36] 张志军, 胡佳伟, 程萍. 生物炭载铁锰氧化物催化H2O2氧化含油废水 [J]. 水处理技术, 2019, 45(8): 61-66. ZHANG Z J, HU J W, CHENG P. Treatment of oily wastewater by charcoal supported iron-manganese oxides catalytic H2O2 oxidation [J]. Technology of Water Treatment, 2019, 45(8): 61-66(in Chinese).
[37] LIU L, WANG B, YAO X, et al. Highly efficient MnOx/biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO [J]. Fuel, 2021, 283: 119336. doi: 10.1016/j.fuel.2020.119336
[38] LYU H, TANG J, HUANG Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite [J]. Chemical Engineering Journal, 2017, 322: 516-524. doi: 10.1016/j.cej.2017.04.058
[39] LYU H H, GONG Y Y, TANG J S. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide [J]. Environmental Science and Pollution Research, 2016, 23(14): 14472-14488. doi: 10.1007/s11356-016-6621-5