[1] |
LUO L, WANG Y, ZHU M, et al. Co-Cu-Al layered double oxides as heterogeneous catalyst for enhanced degradation of organic pollutants in wastewater by activating peroxymonosulfate: performance and synergistic effect[J]. Industrial & Engineering Chemistry Research, 2019, 58: 8699-8711.
|
[2] |
张冠华, 陈语芙, 孟跃, 等. AuCu/ZnAl-LDO复合光催化剂的制备及其光催化性能[J]. 无机化学学报, 2020, 36(5): 109-118.
|
[3] |
ZIARATI A, BADIEI A, GRILLO R, et al. 3D Yolk@Shell TiO2-x/LDH architecture: tailored structure for visible light CO2 conversion[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5903-5910.
|
[4] |
MENG Y, CHEN Y F, ZHOU X B, et al. Experimental and theoretical investigations into the activity and mechanism of the water–gas shift reaction catalyzed by Au nanoparticles supported on Zn-Al/Cr/Fe layered double hydroxides[J]. International Journal of Hydrogen Energy, 2020, 45(1): 464-476. doi: 10.1016/j.ijhydene.2019.10.172
|
[5] |
苏荣军, 魏澜, 赵仁波, 等. 可见光催化剂ZnNiAl-LDOs的表征及降解PNP的研究[J]. 南昌大学学报:理科版, 2020(2): 148-154.
|
[6] |
QIN, Z. , YANG, et al. Synthesis and characterization of polyoxyethylene sulfate intercalated Mg−Al−nitrate layered double hydroxide[J]. Langmuir, 2003, 19(14): 5570-5574. doi: 10.1021/la034526j
|
[7] |
FENG Y, LI D, WANG Y, et al. Synthesis and characterization of a UV absorbent-intercalated Zn-Al layered double hydroxide[J]. Polymer Degradation and Stability, 2006, 91(4): 789-794. doi: 10.1016/j.polymdegradstab.2005.06.006
|
[8] |
ANIPSITAKIS G P, DIONYSIOU D D. RADICAL, et al. Generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705.
|
[9] |
LIANG J, WEI Y, YAO Y, et al. Constructing high-efficiency photocatalyst for degrading ciprofloxacin: Three-dimensional visible light driven graphene based NiAlFe LDH[J]. Journal of Colloid and Interface Science, 2019, 540: 237-246. doi: 10.1016/j.jcis.2019.01.011
|
[10] |
CHOI W, LAHIRI I, SEELABOYINA R, et al. Synthesis of graphene and its applications: A Review[J]. Critical Reviews in Solid State & Materials Sciences, 2010, 35(1): 52-71.
|
[11] |
NICHELA, D A, BERKOVIC, et al. Nitrobenzene degradation in fenton-like systems using Cu(II) as catalyst. comparison between Cu(II)- and Fe(III)-based systems[J]. Chemical Engineering Journal, 2013, 228: 1148-1157. doi: 10.1016/j.cej.2013.05.002
|
[12] |
徐君君, 张熙茹, 杜义平, 等. UV/Cu2O/H2O2耦合强化降解左旋氧氟沙星[J]. 环境化学, 2021: 1-10.
|
[13] |
苏翠伟, 李媛媛, 佟冶, 等. H2O2协同提高单斜晶相BiVO4可见光催化性能的研究[J]. 化工新型材料, 2020, 48(S1): 64-68.
|
[14] |
吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552
|
[15] |
LI Y, CHEN J, LIANG H, et al. Highly compressible macroporous graphene monoliths via an improved hydrothermal process[J]. Advanced Materials, 2014, 26(28): 4789-4793. doi: 10.1002/adma.201400657
|
[16] |
张启彦. TiO2-GO/LDHs复合材料光催化降解VOCs的研究[D]. 济南: 山东大学, 2020.
|
[17] |
PEREZ-RAMIREZ J, MUL G, KAPTEIJN F, et al. Insitu investigation of thethermal decomposition of Co–Al hydrotalcite in different atmospheres[J]. Journal of Materials Chemistry, 2001, 11(3): 821-830. doi: 10.1039/b009320n
|
[18] |
CAI P, HONG Z, CHONG W, et al. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxides[J]. Journal of hazardous materials, 2012, 213-214(30): 100-108.
|
[19] |
DAS D P, DAS J, PARIDA K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTLC) towards removal of fluoride from aqueous solution[J]. J Colloid Interface Sci, 2003, 261(2): 213-220. doi: 10.1016/S0021-9797(03)00082-1
|
[20] |
CHENG X, HUANG X, WANG X, et al. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor.[J]. Journal of Hazardous Materials, 2010, 177(1-3): 516-523. doi: 10.1016/j.jhazmat.2009.12.063
|
[21] |
WANG H, JING M, WU Y, et al. Effective degradation of phenol via Fenton reaction over CuNiFe layered double hydroxides[J]. Journal of Hazardous Materials, 2018(353): 53-61.
|
[22] |
DUAN, X G, SU C, et al. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals[J]. Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2018, 220: 626-634.
|
[23] |
LU S, WANG G, CHEN S, et al. Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants.[J]. Journal of Hazardous Materials, 2018, 353: 401. doi: 10.1016/j.jhazmat.2018.04.021
|
[24] |
REN Y, LIN L, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B Environmental An International Journal Devoted to Catalytic Science & Its Applications, 2015, 165: 572-578.
|
[25] |
JO W K, TONDA S. Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants[J]. Journal of Hazardous Materials, 2019, 368(APR. 15): 778-787.
|
[26] |
RUDOLF C, DRAGOI B, UNGUREANU A, et al. NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts[J]. Catalysis Science & Technology, 2014, 4(1): 179-189.
|
[27] |
KUMAR S, ISAACS M A, TROFIMOVAITE R, et al. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction[J]. Applied Catalysis B Environmental, 2017, 35(1): 394.
|
[28] |
KUMAR S, KUMAR A, et al. Enhanced photocatalytic activity of rGO-CeO2 nanocomposites driven by sunlight[J]. Materials Science and Engineering B, 2017, 223(9): 98-108.
|